{"title":"age RAGE途径:阿尔茨海默病。","authors":"Shubhrat Maheshwari","doi":"10.1055/a-2008-7948","DOIUrl":null,"url":null,"abstract":"<p><p>Neurofibrillary tangles and plaques containing tau serve as the biological markers for Alzheimer disease (AD) and pathogenesis is widely believed to be driven by the production and deposition of the β-amyloid peptide (Aβ). The β-amyloid peptide (Aβ) that results from the modification of the amyloid precursor protein (APP) by builds up as amyloid deposits in neuronal cells. Thus, a protein misfolding process is involved in the production of amyloid. In a native, aqueous buffer, amyloid fibrils are usually exceedingly stable and nearly insoluble. Although amyloid is essentially a foreign substance made of self-proteins, the immune system has difficulty identifying and eliminating it as such for unknown reasons. While the amyloidal deposit may have a direct role in the disease mechanism in some disease states involving amyloidal deposition, this is not always the case. Current research has shown that PS1 (presenilin 1) and BACE (beta-site APP-cleaving enzyme) have - and -secretase activity that increases β-amyloid peptide (Aβ). Wealth of data has shown that oxidative stress and AD are closely connected that causes the death of neuronal cells by producing reactive oxygen species (ROS). Additionally, it has been demonstrated that advanced glycation end products (AGEs) and β-amyloidal peptide (Aβ) together increase neurotoxicity. The objective of this review is to compile the most recent and intriguing data of AGEs and receptor for advanced glycation end products (RAGE) pathways which are responsible for AD.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":"73 5","pages":"251-254"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AGEs RAGE Pathways: Alzheimer's Disease.\",\"authors\":\"Shubhrat Maheshwari\",\"doi\":\"10.1055/a-2008-7948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurofibrillary tangles and plaques containing tau serve as the biological markers for Alzheimer disease (AD) and pathogenesis is widely believed to be driven by the production and deposition of the β-amyloid peptide (Aβ). The β-amyloid peptide (Aβ) that results from the modification of the amyloid precursor protein (APP) by builds up as amyloid deposits in neuronal cells. Thus, a protein misfolding process is involved in the production of amyloid. In a native, aqueous buffer, amyloid fibrils are usually exceedingly stable and nearly insoluble. Although amyloid is essentially a foreign substance made of self-proteins, the immune system has difficulty identifying and eliminating it as such for unknown reasons. While the amyloidal deposit may have a direct role in the disease mechanism in some disease states involving amyloidal deposition, this is not always the case. Current research has shown that PS1 (presenilin 1) and BACE (beta-site APP-cleaving enzyme) have - and -secretase activity that increases β-amyloid peptide (Aβ). Wealth of data has shown that oxidative stress and AD are closely connected that causes the death of neuronal cells by producing reactive oxygen species (ROS). Additionally, it has been demonstrated that advanced glycation end products (AGEs) and β-amyloidal peptide (Aβ) together increase neurotoxicity. The objective of this review is to compile the most recent and intriguing data of AGEs and receptor for advanced glycation end products (RAGE) pathways which are responsible for AD.</p>\",\"PeriodicalId\":11451,\"journal\":{\"name\":\"Drug Research\",\"volume\":\"73 5\",\"pages\":\"251-254\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2008-7948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2008-7948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Neurofibrillary tangles and plaques containing tau serve as the biological markers for Alzheimer disease (AD) and pathogenesis is widely believed to be driven by the production and deposition of the β-amyloid peptide (Aβ). The β-amyloid peptide (Aβ) that results from the modification of the amyloid precursor protein (APP) by builds up as amyloid deposits in neuronal cells. Thus, a protein misfolding process is involved in the production of amyloid. In a native, aqueous buffer, amyloid fibrils are usually exceedingly stable and nearly insoluble. Although amyloid is essentially a foreign substance made of self-proteins, the immune system has difficulty identifying and eliminating it as such for unknown reasons. While the amyloidal deposit may have a direct role in the disease mechanism in some disease states involving amyloidal deposition, this is not always the case. Current research has shown that PS1 (presenilin 1) and BACE (beta-site APP-cleaving enzyme) have - and -secretase activity that increases β-amyloid peptide (Aβ). Wealth of data has shown that oxidative stress and AD are closely connected that causes the death of neuronal cells by producing reactive oxygen species (ROS). Additionally, it has been demonstrated that advanced glycation end products (AGEs) and β-amyloidal peptide (Aβ) together increase neurotoxicity. The objective of this review is to compile the most recent and intriguing data of AGEs and receptor for advanced glycation end products (RAGE) pathways which are responsible for AD.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.