使用MetaboAnalyst向本科生介绍大麦根的脂质组学分析和脂质重塑。

IF 1.2 4区 教育学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Molecular Biology Education Pub Date : 2023-06-07 DOI:10.1002/bmb.21755
Mercedes Reyna, Micaela Peppino Margutti, Ana Carolina Vilchez, Ana Laura Villasuso
{"title":"使用MetaboAnalyst向本科生介绍大麦根的脂质组学分析和脂质重塑。","authors":"Mercedes Reyna,&nbsp;Micaela Peppino Margutti,&nbsp;Ana Carolina Vilchez,&nbsp;Ana Laura Villasuso","doi":"10.1002/bmb.21755","DOIUrl":null,"url":null,"abstract":"<p>Lipidomics is a discipline that focuses on the identification and quantification of lipids. Although a part of the larger omics field, lipidomics requires specific approaches for the analysis and biological interpretation of datasets. This article presents a series of activities for introducing undergraduate microbiology students to lipidomic analysis through tools from the web-based platform MetaboAnalyst. The students perform a complete lipidomic workflow, which includes experiment design, data processing, data normalization, and statistical analysis of molecular phospholipid species obtained from barley roots exposed to <i>Fusarium</i> macroconidia. The input data are provided by the teacher, but students also learn about the methods through which they were originally obtained (untargeted liquid chromatography coupled with mass spectrometry). The ultimate aim is for students to understand the biological significance of phosphatidylcholine acyl editing. The chosen methodology allows users who are not proficient in statistics to make a comprehensive analysis of quantitative lipidomic datasets. We strongly believe that virtual activities based on the analysis of such datasets should be incorporated more often into undergraduate courses, in order to improve students' data-handling skills for omics sciences.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"51 5","pages":"486-493"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using MetaboAnalyst to introduce undergraduates to lipidomic analysis and lipid remodeling in barley roots\",\"authors\":\"Mercedes Reyna,&nbsp;Micaela Peppino Margutti,&nbsp;Ana Carolina Vilchez,&nbsp;Ana Laura Villasuso\",\"doi\":\"10.1002/bmb.21755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lipidomics is a discipline that focuses on the identification and quantification of lipids. Although a part of the larger omics field, lipidomics requires specific approaches for the analysis and biological interpretation of datasets. This article presents a series of activities for introducing undergraduate microbiology students to lipidomic analysis through tools from the web-based platform MetaboAnalyst. The students perform a complete lipidomic workflow, which includes experiment design, data processing, data normalization, and statistical analysis of molecular phospholipid species obtained from barley roots exposed to <i>Fusarium</i> macroconidia. The input data are provided by the teacher, but students also learn about the methods through which they were originally obtained (untargeted liquid chromatography coupled with mass spectrometry). The ultimate aim is for students to understand the biological significance of phosphatidylcholine acyl editing. The chosen methodology allows users who are not proficient in statistics to make a comprehensive analysis of quantitative lipidomic datasets. We strongly believe that virtual activities based on the analysis of such datasets should be incorporated more often into undergraduate courses, in order to improve students' data-handling skills for omics sciences.</p>\",\"PeriodicalId\":8830,\"journal\":{\"name\":\"Biochemistry and Molecular Biology Education\",\"volume\":\"51 5\",\"pages\":\"486-493\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Molecular Biology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21755\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21755","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

脂质组学是一门专注于脂质鉴定和定量的学科。尽管脂质组学是更大的组学领域的一部分,但它需要特定的方法来分析和生物解释数据集。本文介绍了一系列活动,通过网络平台MetaboAnalyst的工具向微生物学本科生介绍脂质组学分析。学生们完成了一个完整的脂质组学工作流程,包括实验设计、数据处理、数据规范化和对从接触镰刀菌的大麦根中获得的分子磷脂物种的统计分析。输入数据由教师提供,但学生也了解最初获得数据的方法(非靶向液相色谱法与质谱法相结合)。最终目的是让学生了解磷脂酰胆碱酰基编辑的生物学意义。所选择的方法允许不精通统计学的用户对定量脂质组学数据集进行全面分析。我们坚信,基于对此类数据集分析的虚拟活动应更多地纳入本科课程,以提高学生在组学科学方面的数据处理技能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using MetaboAnalyst to introduce undergraduates to lipidomic analysis and lipid remodeling in barley roots

Lipidomics is a discipline that focuses on the identification and quantification of lipids. Although a part of the larger omics field, lipidomics requires specific approaches for the analysis and biological interpretation of datasets. This article presents a series of activities for introducing undergraduate microbiology students to lipidomic analysis through tools from the web-based platform MetaboAnalyst. The students perform a complete lipidomic workflow, which includes experiment design, data processing, data normalization, and statistical analysis of molecular phospholipid species obtained from barley roots exposed to Fusarium macroconidia. The input data are provided by the teacher, but students also learn about the methods through which they were originally obtained (untargeted liquid chromatography coupled with mass spectrometry). The ultimate aim is for students to understand the biological significance of phosphatidylcholine acyl editing. The chosen methodology allows users who are not proficient in statistics to make a comprehensive analysis of quantitative lipidomic datasets. We strongly believe that virtual activities based on the analysis of such datasets should be incorporated more often into undergraduate courses, in order to improve students' data-handling skills for omics sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Molecular Biology Education
Biochemistry and Molecular Biology Education 生物-生化与分子生物学
CiteScore
2.60
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including: Innovative techniques in teaching and learning. New pedagogical approaches. Research in biochemistry and molecular biology education. Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc. Historical Reviews describing "Paths to Discovery". Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics. Reviews of relevant textbooks, software, and websites. Descriptions of software for educational use. Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.
期刊最新文献
Issue Information Cinemeducation improves early clinical exposure to inborn errors of metabolism. The development of supplemental multimedia learning modules and their impact on student learning in food biotechnology courses. Encourage self-learning and collaborative learning through gamification during COVID-19 pandemic: A case study for teaching biochemistry. A plant mutant screen CURE integrated with core biology concepts showed effectiveness in course design and students' perceived learning gains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1