自动数量性状位点分析(AutoQTL)。

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2023-04-10 DOI:10.1186/s13040-023-00331-3
Philip J Freda, Attri Ghosh, Elizabeth Zhang, Tianhao Luo, Apurva S Chitre, Oksana Polesskaya, Celine L St Pierre, Jianjun Gao, Connor D Martin, Hao Chen, Angel G Garcia-Martinez, Tengfei Wang, Wenyan Han, Keita Ishiwari, Paul Meyer, Alexander Lamparelli, Christopher P King, Abraham A Palmer, Ruowang Li, Jason H Moore
{"title":"自动数量性状位点分析(AutoQTL)。","authors":"Philip J Freda,&nbsp;Attri Ghosh,&nbsp;Elizabeth Zhang,&nbsp;Tianhao Luo,&nbsp;Apurva S Chitre,&nbsp;Oksana Polesskaya,&nbsp;Celine L St Pierre,&nbsp;Jianjun Gao,&nbsp;Connor D Martin,&nbsp;Hao Chen,&nbsp;Angel G Garcia-Martinez,&nbsp;Tengfei Wang,&nbsp;Wenyan Han,&nbsp;Keita Ishiwari,&nbsp;Paul Meyer,&nbsp;Alexander Lamparelli,&nbsp;Christopher P King,&nbsp;Abraham A Palmer,&nbsp;Ruowang Li,&nbsp;Jason H Moore","doi":"10.1186/s13040-023-00331-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quantitative Trait Locus (QTL) analysis and Genome-Wide Association Studies (GWAS) have the power to identify variants that capture significant levels of phenotypic variance in complex traits. However, effort and time are required to select the best methods and optimize parameters and pre-processing steps. Although machine learning approaches have been shown to greatly assist in optimization and data processing, applying them to QTL analysis and GWAS is challenging due to the complexity of large, heterogenous datasets. Here, we describe proof-of-concept for an automated machine learning approach, AutoQTL, with the ability to automate many complicated decisions related to analysis of complex traits and generate solutions to describe relationships that exist in genetic data.</p><p><strong>Results: </strong>Using a publicly available dataset of 18 putative QTL from a large-scale GWAS of body mass index in the laboratory rat, Rattus norvegicus, AutoQTL captures the phenotypic variance explained under a standard additive model. AutoQTL also detects evidence of non-additive effects including deviations from additivity and 2-way epistatic interactions in simulated data via multiple optimal solutions. Additionally, feature importance metrics provide different insights into the inheritance models and predictive power of multiple GWAS-derived putative QTL.</p><p><strong>Conclusions: </strong>This proof-of-concept illustrates that automated machine learning techniques can complement standard approaches and have the potential to detect both additive and non-additive effects via various optimal solutions and feature importance metrics. In the future, we aim to expand AutoQTL to accommodate omics-level datasets with intelligent feature selection and feature engineering strategies.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated quantitative trait locus analysis (AutoQTL).\",\"authors\":\"Philip J Freda,&nbsp;Attri Ghosh,&nbsp;Elizabeth Zhang,&nbsp;Tianhao Luo,&nbsp;Apurva S Chitre,&nbsp;Oksana Polesskaya,&nbsp;Celine L St Pierre,&nbsp;Jianjun Gao,&nbsp;Connor D Martin,&nbsp;Hao Chen,&nbsp;Angel G Garcia-Martinez,&nbsp;Tengfei Wang,&nbsp;Wenyan Han,&nbsp;Keita Ishiwari,&nbsp;Paul Meyer,&nbsp;Alexander Lamparelli,&nbsp;Christopher P King,&nbsp;Abraham A Palmer,&nbsp;Ruowang Li,&nbsp;Jason H Moore\",\"doi\":\"10.1186/s13040-023-00331-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Quantitative Trait Locus (QTL) analysis and Genome-Wide Association Studies (GWAS) have the power to identify variants that capture significant levels of phenotypic variance in complex traits. However, effort and time are required to select the best methods and optimize parameters and pre-processing steps. Although machine learning approaches have been shown to greatly assist in optimization and data processing, applying them to QTL analysis and GWAS is challenging due to the complexity of large, heterogenous datasets. Here, we describe proof-of-concept for an automated machine learning approach, AutoQTL, with the ability to automate many complicated decisions related to analysis of complex traits and generate solutions to describe relationships that exist in genetic data.</p><p><strong>Results: </strong>Using a publicly available dataset of 18 putative QTL from a large-scale GWAS of body mass index in the laboratory rat, Rattus norvegicus, AutoQTL captures the phenotypic variance explained under a standard additive model. AutoQTL also detects evidence of non-additive effects including deviations from additivity and 2-way epistatic interactions in simulated data via multiple optimal solutions. Additionally, feature importance metrics provide different insights into the inheritance models and predictive power of multiple GWAS-derived putative QTL.</p><p><strong>Conclusions: </strong>This proof-of-concept illustrates that automated machine learning techniques can complement standard approaches and have the potential to detect both additive and non-additive effects via various optimal solutions and feature importance metrics. In the future, we aim to expand AutoQTL to accommodate omics-level datasets with intelligent feature selection and feature engineering strategies.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-023-00331-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-023-00331-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:数量性状位点(QTL)分析和全基因组关联研究(GWAS)能够识别复杂性状中显著表型变异的变异。然而,选择最佳的方法,优化参数和预处理步骤需要时间和精力。尽管机器学习方法已被证明在优化和数据处理方面有很大的帮助,但由于大型异构数据集的复杂性,将它们应用于QTL分析和GWAS是具有挑战性的。在这里,我们描述了自动机器学习方法AutoQTL的概念验证,该方法能够自动执行与复杂性状分析相关的许多复杂决策,并生成描述遗传数据中存在的关系的解决方案。结果:AutoQTL利用来自褐家鼠(Rattus norvegicus)体重指数大规模GWAS的18个假定QTL的公开数据集,捕获了标准加性模型解释的表型差异。AutoQTL还检测非加性效应的证据,包括通过多个最优解在模拟数据中偏离加性和双向上位相互作用。此外,特征重要性指标提供了对多个gwas衍生的假定QTL的继承模型和预测能力的不同见解。结论:这一概念验证表明,自动化机器学习技术可以补充标准方法,并具有通过各种最优解决方案和特征重要性指标检测可加性和非可加性效应的潜力。在未来,我们的目标是通过智能特征选择和特征工程策略扩展AutoQTL以适应组学级别的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated quantitative trait locus analysis (AutoQTL).

Background: Quantitative Trait Locus (QTL) analysis and Genome-Wide Association Studies (GWAS) have the power to identify variants that capture significant levels of phenotypic variance in complex traits. However, effort and time are required to select the best methods and optimize parameters and pre-processing steps. Although machine learning approaches have been shown to greatly assist in optimization and data processing, applying them to QTL analysis and GWAS is challenging due to the complexity of large, heterogenous datasets. Here, we describe proof-of-concept for an automated machine learning approach, AutoQTL, with the ability to automate many complicated decisions related to analysis of complex traits and generate solutions to describe relationships that exist in genetic data.

Results: Using a publicly available dataset of 18 putative QTL from a large-scale GWAS of body mass index in the laboratory rat, Rattus norvegicus, AutoQTL captures the phenotypic variance explained under a standard additive model. AutoQTL also detects evidence of non-additive effects including deviations from additivity and 2-way epistatic interactions in simulated data via multiple optimal solutions. Additionally, feature importance metrics provide different insights into the inheritance models and predictive power of multiple GWAS-derived putative QTL.

Conclusions: This proof-of-concept illustrates that automated machine learning techniques can complement standard approaches and have the potential to detect both additive and non-additive effects via various optimal solutions and feature importance metrics. In the future, we aim to expand AutoQTL to accommodate omics-level datasets with intelligent feature selection and feature engineering strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
Deep joint learning diagnosis of Alzheimer's disease based on multimodal feature fusion. Modeling heterogeneity of Sudanese hospital stay in neonatal and maternal unit: non-parametric random effect models with Gamma distribution. Ensemble feature selection and tabular data augmentation with generative adversarial networks to enhance cutaneous melanoma identification and interpretability. Priority-Elastic net for binary disease outcome prediction based on multi-omics data. A regularized Cox hierarchical model for incorporating annotation information in predictive omic studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1