Lara J Gamble, David Radford, David W Grainger, David G Castner
{"title":"金表面全氟烷硫醇分子秩序的定量评估。","authors":"Lara J Gamble, David Radford, David W Grainger, David G Castner","doi":"10.1116/6.0002720","DOIUrl":null,"url":null,"abstract":"<p><p>Self-assembled monolayers (SAMs) of perfluoroalkanethiols [CF3(CF2)xCH2CH2SH (x = 3, 5, 7, and 9)] on gold were characterized by x-ray photoelectron spectroscopy (XPS), near edge x-ray absorption fine structure (NEXAFS), and static time-of-flight secondary ion mass spectrometry (ToF-SIMS). Perfluoroalkanethiols of several chain lengths were synthesized using a known hydride reduction method for transforming commercially available perfluoroalkyliodides to corresponding perfluoroalkanethiols. This strategy provides improved product yields compared to other known routes based on hydrolysis from the common thioacetyl perfluoroalkyl intermediate. Angle-dependent XPS analysis revealed that CF3(CF2)xCH2CH2SH (x = 5, 7, and 9; F6, F8, and F10, respectively) SAMs on gold exhibited significant enrichment of the terminal CF3 group at the outer monolayer surface with the sulfur present as a metal-bound thiolate located at the monolayer-gold interface. XPS of the CF3(CF2)3CH2CH2SH (F4) monolayer revealed a thin film with a significant (>50%) amount of hydrocarbon contamination consistent with poorly organized monolayers, while the longest thiol (F10) showed XPS signals attributed to substantial ordering and anisotropy. ToF-SIMS spectra from all four SAMs contained molecular ions representative of the particular perfluorinated thiol used to prepare the monolayer. NEXAFS methods were used to determine degrees of ordering and average tilt for molecules comprising monolayers. The SAMs prepared from the longest (F10) thiols exhibited the highest degree of ordering with the molecular axis nearly perpendicular to the gold surface. The degree of ordering decreased significantly with decreasing length of the perfluorocarbon tail.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264085/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative evaluation of perfluorinated alkanethiol molecular order on gold surfaces.\",\"authors\":\"Lara J Gamble, David Radford, David W Grainger, David G Castner\",\"doi\":\"10.1116/6.0002720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-assembled monolayers (SAMs) of perfluoroalkanethiols [CF3(CF2)xCH2CH2SH (x = 3, 5, 7, and 9)] on gold were characterized by x-ray photoelectron spectroscopy (XPS), near edge x-ray absorption fine structure (NEXAFS), and static time-of-flight secondary ion mass spectrometry (ToF-SIMS). Perfluoroalkanethiols of several chain lengths were synthesized using a known hydride reduction method for transforming commercially available perfluoroalkyliodides to corresponding perfluoroalkanethiols. This strategy provides improved product yields compared to other known routes based on hydrolysis from the common thioacetyl perfluoroalkyl intermediate. Angle-dependent XPS analysis revealed that CF3(CF2)xCH2CH2SH (x = 5, 7, and 9; F6, F8, and F10, respectively) SAMs on gold exhibited significant enrichment of the terminal CF3 group at the outer monolayer surface with the sulfur present as a metal-bound thiolate located at the monolayer-gold interface. XPS of the CF3(CF2)3CH2CH2SH (F4) monolayer revealed a thin film with a significant (>50%) amount of hydrocarbon contamination consistent with poorly organized monolayers, while the longest thiol (F10) showed XPS signals attributed to substantial ordering and anisotropy. ToF-SIMS spectra from all four SAMs contained molecular ions representative of the particular perfluorinated thiol used to prepare the monolayer. NEXAFS methods were used to determine degrees of ordering and average tilt for molecules comprising monolayers. The SAMs prepared from the longest (F10) thiols exhibited the highest degree of ordering with the molecular axis nearly perpendicular to the gold surface. The degree of ordering decreased significantly with decreasing length of the perfluorocarbon tail.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264085/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002720\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Quantitative evaluation of perfluorinated alkanethiol molecular order on gold surfaces.
Self-assembled monolayers (SAMs) of perfluoroalkanethiols [CF3(CF2)xCH2CH2SH (x = 3, 5, 7, and 9)] on gold were characterized by x-ray photoelectron spectroscopy (XPS), near edge x-ray absorption fine structure (NEXAFS), and static time-of-flight secondary ion mass spectrometry (ToF-SIMS). Perfluoroalkanethiols of several chain lengths were synthesized using a known hydride reduction method for transforming commercially available perfluoroalkyliodides to corresponding perfluoroalkanethiols. This strategy provides improved product yields compared to other known routes based on hydrolysis from the common thioacetyl perfluoroalkyl intermediate. Angle-dependent XPS analysis revealed that CF3(CF2)xCH2CH2SH (x = 5, 7, and 9; F6, F8, and F10, respectively) SAMs on gold exhibited significant enrichment of the terminal CF3 group at the outer monolayer surface with the sulfur present as a metal-bound thiolate located at the monolayer-gold interface. XPS of the CF3(CF2)3CH2CH2SH (F4) monolayer revealed a thin film with a significant (>50%) amount of hydrocarbon contamination consistent with poorly organized monolayers, while the longest thiol (F10) showed XPS signals attributed to substantial ordering and anisotropy. ToF-SIMS spectra from all four SAMs contained molecular ions representative of the particular perfluorinated thiol used to prepare the monolayer. NEXAFS methods were used to determine degrees of ordering and average tilt for molecules comprising monolayers. The SAMs prepared from the longest (F10) thiols exhibited the highest degree of ordering with the molecular axis nearly perpendicular to the gold surface. The degree of ordering decreased significantly with decreasing length of the perfluorocarbon tail.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.