Manar El Samak , Samira Zakeer , Amro Hanora , Samar M. Solyman
{"title":"埃及红海海绵Theonella sp.相关微生物群落的宏基因组和宏转录组研究","authors":"Manar El Samak , Samira Zakeer , Amro Hanora , Samar M. Solyman","doi":"10.1016/j.margen.2023.101032","DOIUrl":null,"url":null,"abstract":"<div><p>Marine sponges associated microorganisms are considered to be prolific source of bioactive natural products. Omics-based techniques such as metagenomics and metatranscriptomics have been used as effective tools to discover natural products. In this study, we used integrated metagenomic and metatranscriptomic analysis of three samples of the Egyptian Red Sea sponge <em>Theonella</em> sp. microbiome to obtain a complete picture of its biosynthetic activity to produce bioactive compounds. Our data revealed high biodiversity of the Egyptian sponge microbiota represented by 38 bacterial phyla with Candidate Phylum Poribacteria as the most abundant phyla with an average of 27.5% of the microbial community. The analysis also revealed high biosynthetic activity of the sponge microbiome through detecting different types of biosynthetic gene clusters (BGCs) with predicted antibacterial, cytotoxic and inhibitory bioactivity and the majority of these clusters were found to be actively transcribed. The complete BGCs of the cytotoxic theonellamide and misakinolide were detected and found to be actively transcribed. The majority of the detected BGCs were predicted to be novel as they did not show any similarity with any known cluster in the MIBiG database.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"70 ","pages":"Article 101032"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Metagenomic and metatranscriptomic exploration of the Egyptian Red Sea sponge Theonella sp. associated microbial community\",\"authors\":\"Manar El Samak , Samira Zakeer , Amro Hanora , Samar M. Solyman\",\"doi\":\"10.1016/j.margen.2023.101032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Marine sponges associated microorganisms are considered to be prolific source of bioactive natural products. Omics-based techniques such as metagenomics and metatranscriptomics have been used as effective tools to discover natural products. In this study, we used integrated metagenomic and metatranscriptomic analysis of three samples of the Egyptian Red Sea sponge <em>Theonella</em> sp. microbiome to obtain a complete picture of its biosynthetic activity to produce bioactive compounds. Our data revealed high biodiversity of the Egyptian sponge microbiota represented by 38 bacterial phyla with Candidate Phylum Poribacteria as the most abundant phyla with an average of 27.5% of the microbial community. The analysis also revealed high biosynthetic activity of the sponge microbiome through detecting different types of biosynthetic gene clusters (BGCs) with predicted antibacterial, cytotoxic and inhibitory bioactivity and the majority of these clusters were found to be actively transcribed. The complete BGCs of the cytotoxic theonellamide and misakinolide were detected and found to be actively transcribed. The majority of the detected BGCs were predicted to be novel as they did not show any similarity with any known cluster in the MIBiG database.</p></div>\",\"PeriodicalId\":18321,\"journal\":{\"name\":\"Marine genomics\",\"volume\":\"70 \",\"pages\":\"Article 101032\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778723000247\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778723000247","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Metagenomic and metatranscriptomic exploration of the Egyptian Red Sea sponge Theonella sp. associated microbial community
Marine sponges associated microorganisms are considered to be prolific source of bioactive natural products. Omics-based techniques such as metagenomics and metatranscriptomics have been used as effective tools to discover natural products. In this study, we used integrated metagenomic and metatranscriptomic analysis of three samples of the Egyptian Red Sea sponge Theonella sp. microbiome to obtain a complete picture of its biosynthetic activity to produce bioactive compounds. Our data revealed high biodiversity of the Egyptian sponge microbiota represented by 38 bacterial phyla with Candidate Phylum Poribacteria as the most abundant phyla with an average of 27.5% of the microbial community. The analysis also revealed high biosynthetic activity of the sponge microbiome through detecting different types of biosynthetic gene clusters (BGCs) with predicted antibacterial, cytotoxic and inhibitory bioactivity and the majority of these clusters were found to be actively transcribed. The complete BGCs of the cytotoxic theonellamide and misakinolide were detected and found to be actively transcribed. The majority of the detected BGCs were predicted to be novel as they did not show any similarity with any known cluster in the MIBiG database.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.