Jong-Won Lee, Abraham Okki Mwamula, Jae-Hyuk Choi, Ho-Wook Lee, Yi Seul Lee, Jin-Hyo Kim, Dong Woon Lee
{"title":"阿维菌素制剂对松材线虫的防效研究。","authors":"Jong-Won Lee, Abraham Okki Mwamula, Jae-Hyuk Choi, Ho-Wook Lee, Yi Seul Lee, Jin-Hyo Kim, Dong Woon Lee","doi":"10.5423/PPJ.OA.02.2023.0023","DOIUrl":null,"url":null,"abstract":"<p><p>Abamectin offers great protection against Bursaphelenchus xylophilus, a well-known devastating pathogen of pine tree stands. Trunk injection of nematicides is currently the most preferred method of control. This study aimed to evaluate the potency of the commonly used formulations of abamectin against B. xylophilus. Twenty-one formulations of abamectin were evaluated by comparing their sublethal toxicities and reproduction inhibition potentials against B. xylophilus. Nematodes were treated with diluted formulation concentrations in multi-well culture plates. And, populations pre-exposed to pre-determined concentrations of the formulations were inoculated onto Botrytis cinerea culture, and in pine twig cuttings. Potency was contrastingly different among formulations, with LC95 of 0.00285 and 0.39462 mg/ml for the most, and the least potent formulation, respectively. Paralysis generally occurred at an application dose of 0.06 μg/ml or higher, and formulations with high sublethal toxicities caused significant paralysis levels at the tested doses, albeit the variations. Nematode reproduction was evident at lower doses of 0.00053-0.0006 μg/ml both on Botrytis cinerea and pine twigs, with significant variations among formulations. Thus, the study highlighted the inconsistencies in the potency of similar product formulations with the same active ingredient concentration against the target organism, and the need to analyze the potential antagonistic effects of the additives used in formulations.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"39 3","pages":"290-302"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/95/ppj-oa-02-2023-0023.PMC10265120.pdf","citationCount":"0","resultStr":"{\"title\":\"The Potency of Abamectin Formulations against the Pine Wood Nematode, Bursaphelenchus xylophilus.\",\"authors\":\"Jong-Won Lee, Abraham Okki Mwamula, Jae-Hyuk Choi, Ho-Wook Lee, Yi Seul Lee, Jin-Hyo Kim, Dong Woon Lee\",\"doi\":\"10.5423/PPJ.OA.02.2023.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abamectin offers great protection against Bursaphelenchus xylophilus, a well-known devastating pathogen of pine tree stands. Trunk injection of nematicides is currently the most preferred method of control. This study aimed to evaluate the potency of the commonly used formulations of abamectin against B. xylophilus. Twenty-one formulations of abamectin were evaluated by comparing their sublethal toxicities and reproduction inhibition potentials against B. xylophilus. Nematodes were treated with diluted formulation concentrations in multi-well culture plates. And, populations pre-exposed to pre-determined concentrations of the formulations were inoculated onto Botrytis cinerea culture, and in pine twig cuttings. Potency was contrastingly different among formulations, with LC95 of 0.00285 and 0.39462 mg/ml for the most, and the least potent formulation, respectively. Paralysis generally occurred at an application dose of 0.06 μg/ml or higher, and formulations with high sublethal toxicities caused significant paralysis levels at the tested doses, albeit the variations. Nematode reproduction was evident at lower doses of 0.00053-0.0006 μg/ml both on Botrytis cinerea and pine twigs, with significant variations among formulations. Thus, the study highlighted the inconsistencies in the potency of similar product formulations with the same active ingredient concentration against the target organism, and the need to analyze the potential antagonistic effects of the additives used in formulations.</p>\",\"PeriodicalId\":20173,\"journal\":{\"name\":\"Plant Pathology Journal\",\"volume\":\"39 3\",\"pages\":\"290-302\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/95/ppj-oa-02-2023-0023.PMC10265120.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5423/PPJ.OA.02.2023.0023\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.02.2023.0023","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The Potency of Abamectin Formulations against the Pine Wood Nematode, Bursaphelenchus xylophilus.
Abamectin offers great protection against Bursaphelenchus xylophilus, a well-known devastating pathogen of pine tree stands. Trunk injection of nematicides is currently the most preferred method of control. This study aimed to evaluate the potency of the commonly used formulations of abamectin against B. xylophilus. Twenty-one formulations of abamectin were evaluated by comparing their sublethal toxicities and reproduction inhibition potentials against B. xylophilus. Nematodes were treated with diluted formulation concentrations in multi-well culture plates. And, populations pre-exposed to pre-determined concentrations of the formulations were inoculated onto Botrytis cinerea culture, and in pine twig cuttings. Potency was contrastingly different among formulations, with LC95 of 0.00285 and 0.39462 mg/ml for the most, and the least potent formulation, respectively. Paralysis generally occurred at an application dose of 0.06 μg/ml or higher, and formulations with high sublethal toxicities caused significant paralysis levels at the tested doses, albeit the variations. Nematode reproduction was evident at lower doses of 0.00053-0.0006 μg/ml both on Botrytis cinerea and pine twigs, with significant variations among formulations. Thus, the study highlighted the inconsistencies in the potency of similar product formulations with the same active ingredient concentration against the target organism, and the need to analyze the potential antagonistic effects of the additives used in formulations.