阿维菌素制剂对松材线虫的防效研究。

IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Plant Pathology Journal Pub Date : 2023-06-01 DOI:10.5423/PPJ.OA.02.2023.0023
Jong-Won Lee, Abraham Okki Mwamula, Jae-Hyuk Choi, Ho-Wook Lee, Yi Seul Lee, Jin-Hyo Kim, Dong Woon Lee
{"title":"阿维菌素制剂对松材线虫的防效研究。","authors":"Jong-Won Lee,&nbsp;Abraham Okki Mwamula,&nbsp;Jae-Hyuk Choi,&nbsp;Ho-Wook Lee,&nbsp;Yi Seul Lee,&nbsp;Jin-Hyo Kim,&nbsp;Dong Woon Lee","doi":"10.5423/PPJ.OA.02.2023.0023","DOIUrl":null,"url":null,"abstract":"<p><p>Abamectin offers great protection against Bursaphelenchus xylophilus, a well-known devastating pathogen of pine tree stands. Trunk injection of nematicides is currently the most preferred method of control. This study aimed to evaluate the potency of the commonly used formulations of abamectin against B. xylophilus. Twenty-one formulations of abamectin were evaluated by comparing their sublethal toxicities and reproduction inhibition potentials against B. xylophilus. Nematodes were treated with diluted formulation concentrations in multi-well culture plates. And, populations pre-exposed to pre-determined concentrations of the formulations were inoculated onto Botrytis cinerea culture, and in pine twig cuttings. Potency was contrastingly different among formulations, with LC95 of 0.00285 and 0.39462 mg/ml for the most, and the least potent formulation, respectively. Paralysis generally occurred at an application dose of 0.06 μg/ml or higher, and formulations with high sublethal toxicities caused significant paralysis levels at the tested doses, albeit the variations. Nematode reproduction was evident at lower doses of 0.00053-0.0006 μg/ml both on Botrytis cinerea and pine twigs, with significant variations among formulations. Thus, the study highlighted the inconsistencies in the potency of similar product formulations with the same active ingredient concentration against the target organism, and the need to analyze the potential antagonistic effects of the additives used in formulations.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"39 3","pages":"290-302"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/95/ppj-oa-02-2023-0023.PMC10265120.pdf","citationCount":"0","resultStr":"{\"title\":\"The Potency of Abamectin Formulations against the Pine Wood Nematode, Bursaphelenchus xylophilus.\",\"authors\":\"Jong-Won Lee,&nbsp;Abraham Okki Mwamula,&nbsp;Jae-Hyuk Choi,&nbsp;Ho-Wook Lee,&nbsp;Yi Seul Lee,&nbsp;Jin-Hyo Kim,&nbsp;Dong Woon Lee\",\"doi\":\"10.5423/PPJ.OA.02.2023.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abamectin offers great protection against Bursaphelenchus xylophilus, a well-known devastating pathogen of pine tree stands. Trunk injection of nematicides is currently the most preferred method of control. This study aimed to evaluate the potency of the commonly used formulations of abamectin against B. xylophilus. Twenty-one formulations of abamectin were evaluated by comparing their sublethal toxicities and reproduction inhibition potentials against B. xylophilus. Nematodes were treated with diluted formulation concentrations in multi-well culture plates. And, populations pre-exposed to pre-determined concentrations of the formulations were inoculated onto Botrytis cinerea culture, and in pine twig cuttings. Potency was contrastingly different among formulations, with LC95 of 0.00285 and 0.39462 mg/ml for the most, and the least potent formulation, respectively. Paralysis generally occurred at an application dose of 0.06 μg/ml or higher, and formulations with high sublethal toxicities caused significant paralysis levels at the tested doses, albeit the variations. Nematode reproduction was evident at lower doses of 0.00053-0.0006 μg/ml both on Botrytis cinerea and pine twigs, with significant variations among formulations. Thus, the study highlighted the inconsistencies in the potency of similar product formulations with the same active ingredient concentration against the target organism, and the need to analyze the potential antagonistic effects of the additives used in formulations.</p>\",\"PeriodicalId\":20173,\"journal\":{\"name\":\"Plant Pathology Journal\",\"volume\":\"39 3\",\"pages\":\"290-302\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/95/ppj-oa-02-2023-0023.PMC10265120.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5423/PPJ.OA.02.2023.0023\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.02.2023.0023","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿维菌素对一种众所周知的破坏松树林的病原菌——木腐菌有很好的保护作用。树干注射杀线虫剂是目前最常用的防治方法。本研究旨在评价常用的阿维菌素制剂对嗜木杆菌的药效。比较了21种阿维菌素制剂对嗜木杆菌的亚致死毒性和繁殖抑制潜力。线虫用稀释的制剂浓度在多孔培养板上处理。并且,将预先暴露于预先确定浓度的制剂的群体接种到灰葡萄球菌培养物和松枝插枝上。效价差异较大,效价最高的LC95为0.00285 mg/ml,效价最低的LC95为0.39462 mg/ml。通常在0.06 μg/ml或更高的应用剂量时发生麻痹,具有高亚致死毒性的制剂在测试剂量下引起显著的麻痹水平,尽管存在差异。在0.00053 ~ 0.0006 μg/ml较低剂量下,线虫在灰霉病菌和松枝上均有明显繁殖,各制剂间差异显著。因此,该研究强调了具有相同活性成分浓度的类似产品配方对目标生物体的效力的不一致性,以及分析配方中使用的添加剂的潜在拮抗作用的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Potency of Abamectin Formulations against the Pine Wood Nematode, Bursaphelenchus xylophilus.

Abamectin offers great protection against Bursaphelenchus xylophilus, a well-known devastating pathogen of pine tree stands. Trunk injection of nematicides is currently the most preferred method of control. This study aimed to evaluate the potency of the commonly used formulations of abamectin against B. xylophilus. Twenty-one formulations of abamectin were evaluated by comparing their sublethal toxicities and reproduction inhibition potentials against B. xylophilus. Nematodes were treated with diluted formulation concentrations in multi-well culture plates. And, populations pre-exposed to pre-determined concentrations of the formulations were inoculated onto Botrytis cinerea culture, and in pine twig cuttings. Potency was contrastingly different among formulations, with LC95 of 0.00285 and 0.39462 mg/ml for the most, and the least potent formulation, respectively. Paralysis generally occurred at an application dose of 0.06 μg/ml or higher, and formulations with high sublethal toxicities caused significant paralysis levels at the tested doses, albeit the variations. Nematode reproduction was evident at lower doses of 0.00053-0.0006 μg/ml both on Botrytis cinerea and pine twigs, with significant variations among formulations. Thus, the study highlighted the inconsistencies in the potency of similar product formulations with the same active ingredient concentration against the target organism, and the need to analyze the potential antagonistic effects of the additives used in formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Pathology Journal
Plant Pathology Journal 生物-植物科学
CiteScore
4.90
自引率
4.30%
发文量
71
审稿时长
12 months
期刊介绍: Information not localized
期刊最新文献
Molecular Identification and Genetic Diversity Analysis of Papaya Leaf Curl China Virus Infecting Ageratum conyzoides. Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities. Re-identification of Korean Isolates in the Colletotrichum dematium, C. magnum, C. orchidearum, and C. orbiculare Species Complexes. Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness. Arabidopsis WRKY55 Transcription Factor Enhances Soft Rot Disease Resistance with ORA59.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1