1973-2022年韩国夏季平均降水量和极端降水量的趋势和时空变异性。

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2023-04-06 DOI:10.1007/s13143-023-00323-7
Hye-Ryeom Kim, Mincheol Moon, Junghee Yun, Kyung-Ja Ha
{"title":"1973-2022年韩国夏季平均降水量和极端降水量的趋势和时空变异性。","authors":"Hye-Ryeom Kim,&nbsp;Mincheol Moon,&nbsp;Junghee Yun,&nbsp;Kyung-Ja Ha","doi":"10.1007/s13143-023-00323-7","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>Climate change has altered the frequency, intensity, and timing of mean and extreme precipitation. Extreme precipitation has caused tremendous socio-economic losses, and severe impacts on human life, livelihood, and ecosystems. In recent years, heavy rainfall events occurred during the boreal summer (June-to-August) frequently and sporadically over South Korea. Given that its severity, a call for an urgent investigation of summer extreme rainfall is needed. Although many previous studies have addressed daily extreme precipitation, hourly extreme rainfall still needs to be thoroughly investigated. Therefore, in this study, we investigated the trends, spatio-temporal variability, and long-term variations in mean and extreme precipitation over South Korea during the boreal summertime using daily and hourly observational data through various analysis methods. During the past 50 years (1973–2022), there has been a notable escalation in maximum hourly precipitation, although the boreal summer mean precipitation has increased only marginally. Regionally, an increase in mean and extreme rainfall occurred in the northern part of the central region and the southern coast of the Korean peninsula. Moreover, the increase in intensity and frequency of extreme precipitation as well as in dry day have contributed more to the total summer precipitation in recent years. Our findings provide scientific insights into the progression of extreme summer precipitation events in South Korea.</p></div></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 3","pages":"385 - 398"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-023-00323-7.pdf","citationCount":"1","resultStr":"{\"title\":\"Trends and Spatio-Temporal Variability of Summer Mean and Extreme Precipitation across South Korea for 1973–2022\",\"authors\":\"Hye-Ryeom Kim,&nbsp;Mincheol Moon,&nbsp;Junghee Yun,&nbsp;Kyung-Ja Ha\",\"doi\":\"10.1007/s13143-023-00323-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract\\n</h2><div><p>Climate change has altered the frequency, intensity, and timing of mean and extreme precipitation. Extreme precipitation has caused tremendous socio-economic losses, and severe impacts on human life, livelihood, and ecosystems. In recent years, heavy rainfall events occurred during the boreal summer (June-to-August) frequently and sporadically over South Korea. Given that its severity, a call for an urgent investigation of summer extreme rainfall is needed. Although many previous studies have addressed daily extreme precipitation, hourly extreme rainfall still needs to be thoroughly investigated. Therefore, in this study, we investigated the trends, spatio-temporal variability, and long-term variations in mean and extreme precipitation over South Korea during the boreal summertime using daily and hourly observational data through various analysis methods. During the past 50 years (1973–2022), there has been a notable escalation in maximum hourly precipitation, although the boreal summer mean precipitation has increased only marginally. Regionally, an increase in mean and extreme rainfall occurred in the northern part of the central region and the southern coast of the Korean peninsula. Moreover, the increase in intensity and frequency of extreme precipitation as well as in dry day have contributed more to the total summer precipitation in recent years. Our findings provide scientific insights into the progression of extreme summer precipitation events in South Korea.</p></div></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"59 3\",\"pages\":\"385 - 398\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13143-023-00323-7.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-023-00323-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-023-00323-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

气候变化改变了平均和极端降水的频率、强度和时间。极端降水造成了巨大的社会经济损失,并对人类生活、生计和生态系统产生了严重影响。近年来,韩国北方夏季(6月至8月)频繁、零星地发生强降雨事件。鉴于其严重性,需要对夏季极端降雨进行紧急调查。尽管之前的许多研究都涉及每日极端降雨量,但每小时极端降雨量仍需彻底调查。因此,在本研究中,我们通过各种分析方法,利用每日和每小时的观测数据,调查了韩国北方夏季平均和极端降水量的趋势、时空变异性以及长期变化。在过去的50年中(1973-2022年),最大小时降水量显著增加,尽管北方夏季平均降水量仅略有增加。从区域来看,中部地区北部和朝鲜半岛南部海岸的平均降雨量和极端降雨量有所增加。此外,近年来极端降水强度和频率的增加以及干旱日对夏季总降水量的贡献更大。我们的发现为韩国极端夏季降水事件的进展提供了科学见解。补充信息:在线版本包含补充材料,可访问10.1007/s13143-023-00323-7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends and Spatio-Temporal Variability of Summer Mean and Extreme Precipitation across South Korea for 1973–2022

Abstract

Climate change has altered the frequency, intensity, and timing of mean and extreme precipitation. Extreme precipitation has caused tremendous socio-economic losses, and severe impacts on human life, livelihood, and ecosystems. In recent years, heavy rainfall events occurred during the boreal summer (June-to-August) frequently and sporadically over South Korea. Given that its severity, a call for an urgent investigation of summer extreme rainfall is needed. Although many previous studies have addressed daily extreme precipitation, hourly extreme rainfall still needs to be thoroughly investigated. Therefore, in this study, we investigated the trends, spatio-temporal variability, and long-term variations in mean and extreme precipitation over South Korea during the boreal summertime using daily and hourly observational data through various analysis methods. During the past 50 years (1973–2022), there has been a notable escalation in maximum hourly precipitation, although the boreal summer mean precipitation has increased only marginally. Regionally, an increase in mean and extreme rainfall occurred in the northern part of the central region and the southern coast of the Korean peninsula. Moreover, the increase in intensity and frequency of extreme precipitation as well as in dry day have contributed more to the total summer precipitation in recent years. Our findings provide scientific insights into the progression of extreme summer precipitation events in South Korea.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Impact of Arctic Sea Ice Representation on Extended Medium-Range Forecasting: a Case Study of the 2016 Barents-Kara Sea Warming Event Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions Correction: Forecast Accuracy and Physics Sensitivity in High-Resolution Simulations of Precipitation Events in Summer 2022 by the Korean Integrated Model Comprehensive Analysis of PM2.5 Concentrations in the Seoul Metro Underground Stations: Relationships with Indoor Sources and Outdoor Air Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1