{"title":"一种基于CBAM-3D CNN-LSTM模型的癫痫发作预测方法。","authors":"Xiang Lu;Anhao Wen;Lei Sun;Hao Wang;Yinjing Guo;Yande Ren","doi":"10.1109/JTEHM.2023.3290036","DOIUrl":null,"url":null,"abstract":"Epilepsy as a common disease of the nervous system, with high incidence, sudden and recurrent characteristics. Therefore, timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. Epilepsy seizures is the result of temporal and spatial evolution, Existing deep learning methods often ignore its spatial features, in order to make better use of the temporal and spatial characteristics of epileptic EEG signals. We propose a CBAM-3D CNN-LSTM model to predict epilepsy seizures. First, we apply short-time Fourier transform(STFT) to preprocess EEG signals. Secondly, the 3D CNN model was used to extract the features of preictal stage and interictal stage from the preprocessed signals. Thirdly, Bi-LSTM is connected to 3D CNN for classification. Finally CBAM is introduced into the model. Different attention is given to the data channel and space to extract key information, so that the model can accurately extract interictal and pre-ictal features. Our proposed approach achieved an accuracy of 97.95%, a sensitivity of 98.40%, and a false alarm rate of 0.017 h\n<sup>−1</sup>\n on 11 patients from the public CHB-MIT scalp EEG dataset. \n<italic><b>Clinical and Translational Impact Statement</b></i>\n—Timely prediction of epileptic seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"417-423"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10164022","citationCount":"1","resultStr":"{\"title\":\"An Epileptic Seizure Prediction Method Based on CBAM-3D CNN-LSTM Model\",\"authors\":\"Xiang Lu;Anhao Wen;Lei Sun;Hao Wang;Yinjing Guo;Yande Ren\",\"doi\":\"10.1109/JTEHM.2023.3290036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy as a common disease of the nervous system, with high incidence, sudden and recurrent characteristics. Therefore, timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. Epilepsy seizures is the result of temporal and spatial evolution, Existing deep learning methods often ignore its spatial features, in order to make better use of the temporal and spatial characteristics of epileptic EEG signals. We propose a CBAM-3D CNN-LSTM model to predict epilepsy seizures. First, we apply short-time Fourier transform(STFT) to preprocess EEG signals. Secondly, the 3D CNN model was used to extract the features of preictal stage and interictal stage from the preprocessed signals. Thirdly, Bi-LSTM is connected to 3D CNN for classification. Finally CBAM is introduced into the model. Different attention is given to the data channel and space to extract key information, so that the model can accurately extract interictal and pre-ictal features. Our proposed approach achieved an accuracy of 97.95%, a sensitivity of 98.40%, and a false alarm rate of 0.017 h\\n<sup>−1</sup>\\n on 11 patients from the public CHB-MIT scalp EEG dataset. \\n<italic><b>Clinical and Translational Impact Statement</b></i>\\n—Timely prediction of epileptic seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"417-423\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10164022\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10164022/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10164022/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An Epileptic Seizure Prediction Method Based on CBAM-3D CNN-LSTM Model
Epilepsy as a common disease of the nervous system, with high incidence, sudden and recurrent characteristics. Therefore, timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. Epilepsy seizures is the result of temporal and spatial evolution, Existing deep learning methods often ignore its spatial features, in order to make better use of the temporal and spatial characteristics of epileptic EEG signals. We propose a CBAM-3D CNN-LSTM model to predict epilepsy seizures. First, we apply short-time Fourier transform(STFT) to preprocess EEG signals. Secondly, the 3D CNN model was used to extract the features of preictal stage and interictal stage from the preprocessed signals. Thirdly, Bi-LSTM is connected to 3D CNN for classification. Finally CBAM is introduced into the model. Different attention is given to the data channel and space to extract key information, so that the model can accurately extract interictal and pre-ictal features. Our proposed approach achieved an accuracy of 97.95%, a sensitivity of 98.40%, and a false alarm rate of 0.017 h
−1
on 11 patients from the public CHB-MIT scalp EEG dataset.
Clinical and Translational Impact Statement
—Timely prediction of epileptic seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.