Eva M Del Amo, Kati-Sisko Vellonen, Arto Urtti, Tetsuya Terasaki, Anam Hammid, Paavo Honkakoski, Seppo Auriola
{"title":"质谱法在眼科药物研究中的应用。","authors":"Eva M Del Amo, Kati-Sisko Vellonen, Arto Urtti, Tetsuya Terasaki, Anam Hammid, Paavo Honkakoski, Seppo Auriola","doi":"10.1002/mas.21861","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry (MS) has been proven as an excellent tool in ocular drug research allowing analyzes from small samples and low concentrations. This review begins with a short introduction to eye physiology and ocular pharmacokinetics and the relevance of advancing ophthalmic treatments. The second part of the review consists of an introduction to ocular proteomics, with special emphasis on targeted absolute quantitation of membrane transporters and metabolizing enzymes. The third part of the review deals with liquid chromatography-MS (LC-MS) and MS imaging (MSI) methods used in the analysis of drugs and metabolites in ocular samples. The sensitivity and speed of LC-MS make simultaneous quantitation of various drugs and metabolites possible in minute tissue samples, even though ocular sample preparation requires careful handling. The MSI methodology is on the verge of becoming as important as LC-MS in ocular pharmacokinetic studies, since the spatial resolution has reached the level, where cell layers can be separated, and quantitation with isotope-labeled standards has come more reliable. MS will remain in the foreseeable future as the main analytical method that will progress our understanding of ocular pharmacokinetics.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass spectrometry in ocular drug research.\",\"authors\":\"Eva M Del Amo, Kati-Sisko Vellonen, Arto Urtti, Tetsuya Terasaki, Anam Hammid, Paavo Honkakoski, Seppo Auriola\",\"doi\":\"10.1002/mas.21861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mass spectrometry (MS) has been proven as an excellent tool in ocular drug research allowing analyzes from small samples and low concentrations. This review begins with a short introduction to eye physiology and ocular pharmacokinetics and the relevance of advancing ophthalmic treatments. The second part of the review consists of an introduction to ocular proteomics, with special emphasis on targeted absolute quantitation of membrane transporters and metabolizing enzymes. The third part of the review deals with liquid chromatography-MS (LC-MS) and MS imaging (MSI) methods used in the analysis of drugs and metabolites in ocular samples. The sensitivity and speed of LC-MS make simultaneous quantitation of various drugs and metabolites possible in minute tissue samples, even though ocular sample preparation requires careful handling. The MSI methodology is on the verge of becoming as important as LC-MS in ocular pharmacokinetic studies, since the spatial resolution has reached the level, where cell layers can be separated, and quantitation with isotope-labeled standards has come more reliable. MS will remain in the foreseeable future as the main analytical method that will progress our understanding of ocular pharmacokinetics.</p>\",\"PeriodicalId\":206,\"journal\":{\"name\":\"Mass Spectrometry Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass Spectrometry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/mas.21861\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mas.21861","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Mass spectrometry (MS) has been proven as an excellent tool in ocular drug research allowing analyzes from small samples and low concentrations. This review begins with a short introduction to eye physiology and ocular pharmacokinetics and the relevance of advancing ophthalmic treatments. The second part of the review consists of an introduction to ocular proteomics, with special emphasis on targeted absolute quantitation of membrane transporters and metabolizing enzymes. The third part of the review deals with liquid chromatography-MS (LC-MS) and MS imaging (MSI) methods used in the analysis of drugs and metabolites in ocular samples. The sensitivity and speed of LC-MS make simultaneous quantitation of various drugs and metabolites possible in minute tissue samples, even though ocular sample preparation requires careful handling. The MSI methodology is on the verge of becoming as important as LC-MS in ocular pharmacokinetic studies, since the spatial resolution has reached the level, where cell layers can be separated, and quantitation with isotope-labeled standards has come more reliable. MS will remain in the foreseeable future as the main analytical method that will progress our understanding of ocular pharmacokinetics.
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.