Thayer Fisher, Alex Luedtke, Marco Carone, Noah Simon
{"title":"Marginal Bayesian Posterior Inference using Recurrent Neural Networks with Application to Sequential Models.","authors":"Thayer Fisher, Alex Luedtke, Marco Carone, Noah Simon","doi":"10.5705/ss.202020.0348","DOIUrl":null,"url":null,"abstract":"<p><p>In Bayesian data analysis, it is often important to evaluate quantiles of the posterior distribution of a parameter of interest (e.g., to form posterior intervals). In multi-dimensional problems, when non-conjugate priors are used, this is often difficult generally requiring either an analytic or sampling-based approximation, such as Markov chain Monte-Carlo (MCMC), Approximate Bayesian computation (ABC) or variational inference. We discuss a general approach that reframes this as a multi-task learning problem and uses recurrent deep neural networks (RNNs) to approximately evaluate posterior quantiles. As RNNs carry information along a sequence, this application is particularly useful in time-series. An advantage of this risk-minimization approach is that we do not need to sample from the posterior or calculate the likelihood. We illustrate the proposed approach in several examples.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"33 SI","pages":"1507-1532"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321540/pdf/nihms-1807576.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In Bayesian data analysis, it is often important to evaluate quantiles of the posterior distribution of a parameter of interest (e.g., to form posterior intervals). In multi-dimensional problems, when non-conjugate priors are used, this is often difficult generally requiring either an analytic or sampling-based approximation, such as Markov chain Monte-Carlo (MCMC), Approximate Bayesian computation (ABC) or variational inference. We discuss a general approach that reframes this as a multi-task learning problem and uses recurrent deep neural networks (RNNs) to approximately evaluate posterior quantiles. As RNNs carry information along a sequence, this application is particularly useful in time-series. An advantage of this risk-minimization approach is that we do not need to sample from the posterior or calculate the likelihood. We illustrate the proposed approach in several examples.
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.