Parsimonious Tensor Discriminant Analysis

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2024-01-01 DOI:10.5705/ss.202020.0496
Ning Wang, Wenjing Wang, Xin Zhang
{"title":"Parsimonious Tensor Discriminant Analysis","authors":"Ning Wang, Wenjing Wang, Xin Zhang","doi":"10.5705/ss.202020.0496","DOIUrl":null,"url":null,"abstract":": Discriminant analyses of multidimensional array data (i.e., tensors) are of substantial interest in numerous statistics and engineering research problems, such as signal processing, imaging, genetics, and brain–computer interfaces. In this study, we consider a multi-class discriminant analysis with a tensor-variate predictor and a categorical response. To overcome the high dimensionality and to exploit the tensor correlation structure, we propose the discriminant analysis with tensor envelope (DATE) model for simultaneous dimension reduction and classification. We extend the notion of tensor envelopes from regression to discriminant analysis and develop two complementary estimation procedures: DATE-L is a likelihood-based estimator that is shown to be asymptotically efficient when the sample size goes to infinity and the tensor dimension is fixed; DATE-D is a novel decomposition-based estimator suitable for high-dimensional problems. Interestingly, we show that DATE-D is still root-n consistent, even when the tensor dimensions on each model grow arbitrarily fast, but at a similar rate. We demonstrate the robustness and effi-ciency of our estimators using extensive simulations and real-data examples.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0496","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

: Discriminant analyses of multidimensional array data (i.e., tensors) are of substantial interest in numerous statistics and engineering research problems, such as signal processing, imaging, genetics, and brain–computer interfaces. In this study, we consider a multi-class discriminant analysis with a tensor-variate predictor and a categorical response. To overcome the high dimensionality and to exploit the tensor correlation structure, we propose the discriminant analysis with tensor envelope (DATE) model for simultaneous dimension reduction and classification. We extend the notion of tensor envelopes from regression to discriminant analysis and develop two complementary estimation procedures: DATE-L is a likelihood-based estimator that is shown to be asymptotically efficient when the sample size goes to infinity and the tensor dimension is fixed; DATE-D is a novel decomposition-based estimator suitable for high-dimensional problems. Interestingly, we show that DATE-D is still root-n consistent, even when the tensor dimensions on each model grow arbitrarily fast, but at a similar rate. We demonstrate the robustness and effi-ciency of our estimators using extensive simulations and real-data examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简约张量判别分析
多维阵列数据(即张量)的判别分析在许多统计学和工程研究问题中具有重要意义,例如信号处理、成像、遗传学和脑机接口。在这项研究中,我们考虑了一个具有张量变量预测器和分类响应的多类判别分析。为了克服数据的高维性和利用张量关联结构,我们提出了基于张量包络(DATE)模型的判别分析方法,用于同时进行降维和分类。我们将张量包膜的概念从回归扩展到判别分析,并开发了两个互补的估计过程:DATE-L是一个基于似然的估计器,当样本量趋于无穷大且张量维固定时,它是渐近有效的;DATE-D是一种适用于高维问题的新的基于分解的估计器。有趣的是,我们证明DATE-D仍然是根n一致的,即使每个模型上的张量维以任意快的速度增长,但速度相似。我们通过大量的模拟和实际数据示例证明了我们的估计器的鲁棒性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes Adaptive Randomization via Mahalanobis Distance Unbiased Boosting Estimation for Censored Survival Data Parsimonious Tensor Discriminant Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1