A comparative analysis of meta-heuristic optimization algorithms for feature selection on ML-based classification of heart-related diseases.

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Supercomputing Pub Date : 2023-01-01 Epub Date: 2023-03-03 DOI:10.1007/s11227-023-05132-3
Şevket Ay, Ekin Ekinci, Zeynep Garip
{"title":"A comparative analysis of meta-heuristic optimization algorithms for feature selection on ML-based classification of heart-related diseases.","authors":"Şevket Ay,&nbsp;Ekin Ekinci,&nbsp;Zeynep Garip","doi":"10.1007/s11227-023-05132-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"79 11","pages":"11797-11826"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983547/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05132-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

Abstract

This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ML的心脏相关疾病分类特征选择的元启发式优化算法的比较分析。
本研究旨在使用基于机器学习(ML)的增强诊断和生存模型,通过结合杜鹃搜索(CS)、花朵授粉算法(FPA)、鲸鱼优化算法(WOA)和哈里斯-霍克斯优化算法(HHO)来预测心脏病和心力衰竭的生存,这是一种元启发式特征选择算法。为了实现这一点,在克利夫兰心脏病数据集和从加州大学学院费萨拉巴德心脏病学研究所收集的心力衰竭数据集上进行了实验。用于特征选择的CS、FPA、WOA和HHO算法被应用于不同的群体大小,并基于最佳适应度值来实现。对于心脏病的原始数据集,与逻辑回归(LR)、支持向量机(SVM)、高斯朴素贝叶斯(GNB)和随机森林(RF)相比,使用K近邻(KNN)获得了88%的最大预测F分。使用所提出的方法,通过选择八个特征,使用KNN对具有FPA的60人口规模获得了99.72%的心脏病预测F分数。对于心力衰竭的原始数据集,与SVM、GNB和KNN相比,使用LR和RF获得了70%的最大预测F分数。使用所提出的方法,通过选择五个特征,使用KNN对患有HHO的10号人群获得了97.45%的心力衰竭预测F分。实验结果表明,与从原始数据集获得的性能相比,将元启发式算法与ML算法相结合显著提高了预测性能。本文的动机是通过元启发式算法选择最关键、信息量最大的特征子集,以提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
期刊最新文献
Topic sentiment analysis based on deep neural network using document embedding technique. A Fechner multiscale local descriptor for face recognition. Data quality model for assessing public COVID-19 big datasets. BTDA: Two-factor dynamic identity authentication scheme for data trading based on alliance chain. Driving behavior analysis and classification by vehicle OBD data using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1