Comparison of metaheuristic algorithms for simulation based OPF computation

S. Hutterer, F. Auinger, M. Affenzeller
{"title":"Comparison of metaheuristic algorithms for simulation based OPF computation","authors":"S. Hutterer, F. Auinger, M. Affenzeller","doi":"10.1109/ESIME.2011.5765775","DOIUrl":null,"url":null,"abstract":"Electric power grid operation being an ever challenging scientific field is faced with a high variety of optimization problems. Since the future vision of so called smart grids causes higher complexity and new requirements to these problems, sophisticated investigation in suitable optimization algorithms is essential. Here, metaheuristic optimization strategies are proven to be suitable for high dimensional multimodal problems, and are capable of computing good solutions for hard problems in reasonable time. Therefore, a simulation- based optimization approach is introduced forming a highly applicable framework for testing the suitability of metaheuristic algorithms to practical optimization problems in power grid operation. Different algorithms will be experimentally compared to each other based on Optimal Power Flow computation to the standardized IEEE 30-Bus testcase.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"52 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electric power grid operation being an ever challenging scientific field is faced with a high variety of optimization problems. Since the future vision of so called smart grids causes higher complexity and new requirements to these problems, sophisticated investigation in suitable optimization algorithms is essential. Here, metaheuristic optimization strategies are proven to be suitable for high dimensional multimodal problems, and are capable of computing good solutions for hard problems in reasonable time. Therefore, a simulation- based optimization approach is introduced forming a highly applicable framework for testing the suitability of metaheuristic algorithms to practical optimization problems in power grid operation. Different algorithms will be experimentally compared to each other based on Optimal Power Flow computation to the standardized IEEE 30-Bus testcase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿真的OPF计算的元启发式算法比较
电网运行是一个极具挑战性的科学领域,面临着各种各样的优化问题。由于智能电网的未来愿景对这些问题提出了更高的复杂性和新的要求,因此有必要深入研究合适的优化算法。本文证明了元启发式优化策略适用于高维多模态问题,并且能够在合理的时间内计算出较难问题的良好解。因此,本文引入了一种基于仿真的优化方法,形成了一个高度适用的框架,用于测试元启发式算法对电网运行中实际优化问题的适用性。将基于最优潮流计算的不同算法与标准化的IEEE 30总线测试用例进行实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of metaheuristic algorithms for simulation based OPF computation Challenges of power electronic packaging and modeling Impact of VDMOS source metallization ageing in 3D FEM wire lift off modeling Assessment of thermo mechanical properties of crosslinked epoxy mesoscale approach — Preliminary results FEA study on electrical interconnects for a power QFN package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1