{"title":"Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning","authors":"Y. Nojima, H. Ishibuchi, I. Kuwajima","doi":"10.1109/ISEFS.2006.251148","DOIUrl":null,"url":null,"abstract":"We developed two GA-based schemes for the design of fuzzy rule-based classification systems. One is genetic rule selection and the other is genetics-based machine learning (GBML). In our genetic rule selection scheme, first a large number of promising fuzzy rules are extracted from numerical data in a heuristic manner as candidate rules. Then a genetic algorithm is used to select a small number of fuzzy rules. A rule set is represented by a binary string whose length is equal to the number of candidate rules. On the other hand, a fuzzy rule is denoted by its antecedent fuzzy sets as an integer substring in our GBML scheme. A rule set is represented by a concatenated integer string. In this paper, we compare these two schemes in terms of their search ability to efficiently find compact fuzzy rule-based classification systems with high accuracy. The main difference between these two schemes is that GBML has a huge search space consisting of all combinations of possible fuzzy rules while genetic rule selection has a much smaller search space with only candidate rules","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"44 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We developed two GA-based schemes for the design of fuzzy rule-based classification systems. One is genetic rule selection and the other is genetics-based machine learning (GBML). In our genetic rule selection scheme, first a large number of promising fuzzy rules are extracted from numerical data in a heuristic manner as candidate rules. Then a genetic algorithm is used to select a small number of fuzzy rules. A rule set is represented by a binary string whose length is equal to the number of candidate rules. On the other hand, a fuzzy rule is denoted by its antecedent fuzzy sets as an integer substring in our GBML scheme. A rule set is represented by a concatenated integer string. In this paper, we compare these two schemes in terms of their search ability to efficiently find compact fuzzy rule-based classification systems with high accuracy. The main difference between these two schemes is that GBML has a huge search space consisting of all combinations of possible fuzzy rules while genetic rule selection has a much smaller search space with only candidate rules