Pruning for interpretability of large spanned eTS

J. V. Ramos, A. Dourado
{"title":"Pruning for interpretability of large spanned eTS","authors":"J. V. Ramos, A. Dourado","doi":"10.1109/ISEFS.2006.251154","DOIUrl":null,"url":null,"abstract":"On-line implementation of mechanisms for merging membership functions and rule base simplification are studied in order to improve the interpretability of the eTS fuzzy models. This allows the minimization of redundancy and complexity of the models that may arrive during its development, increasing transparency (human interpretability). The on-line learning technique used is the evolving first-order Takagi-Sugeno (eTS) fuzzy models with rule spanned. A four rule fuzzy system is obtained for the Auto-Mpg benchmark data set with acceptable accuracy","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

On-line implementation of mechanisms for merging membership functions and rule base simplification are studied in order to improve the interpretability of the eTS fuzzy models. This allows the minimization of redundancy and complexity of the models that may arrive during its development, increasing transparency (human interpretability). The on-line learning technique used is the evolving first-order Takagi-Sugeno (eTS) fuzzy models with rule spanned. A four rule fuzzy system is obtained for the Auto-Mpg benchmark data set with acceptable accuracy
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大跨度et的可解释性修剪
为了提高eTS模糊模型的可解释性,研究了在线实现的隶属函数合并机制和规则库简化机制。这使得在开发过程中可能出现的模型的冗余和复杂性最小化,增加了透明度(人类可解释性)。使用的在线学习技术是演化的一阶Takagi-Sugeno (eTS)模糊模型。对Auto-Mpg基准数据集得到了一个精度可接受的四规则模糊系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1