Spatial Interpolation of Traffic Data by Genetic Fuzzy System

D. Ichiba, K. Hara, H. Kanoh
{"title":"Spatial Interpolation of Traffic Data by Genetic Fuzzy System","authors":"D. Ichiba, K. Hara, H. Kanoh","doi":"10.1109/ISEFS.2006.251176","DOIUrl":null,"url":null,"abstract":"We propose a method to interpolate traffic data of roads using genetic fuzzy systems (GFSs). In Japan, car navigation equipment provides drivers with real-time traffic information about principal roads. The information enables giving route guidance. In a previous study, the problem of the method lies in the following two facts because a human designs membership functions of fuzzy c-means (FCM) experientially. One fact is that the design cost is high; the other is that tuning membership functions optimally is difficult. We automatically tune membership functions using a genetic algorithm (GA). The membership functions are encoded as a chromosome of GA, and the average of mean daily errors calculated from actual traffic data is used as a fitness function. Experiments using actual traffic data and an actual road map indicate that our method is more effective than the conventional method","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a method to interpolate traffic data of roads using genetic fuzzy systems (GFSs). In Japan, car navigation equipment provides drivers with real-time traffic information about principal roads. The information enables giving route guidance. In a previous study, the problem of the method lies in the following two facts because a human designs membership functions of fuzzy c-means (FCM) experientially. One fact is that the design cost is high; the other is that tuning membership functions optimally is difficult. We automatically tune membership functions using a genetic algorithm (GA). The membership functions are encoded as a chromosome of GA, and the average of mean daily errors calculated from actual traffic data is used as a fitness function. Experiments using actual traffic data and an actual road map indicate that our method is more effective than the conventional method
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传模糊系统的交通数据空间插值
提出了一种利用遗传模糊系统(gfs)插值道路交通数据的方法。在日本,汽车导航设备为驾驶员提供主要道路的实时交通信息。这些信息可以提供路线指导。在以往的研究中,由于人是经验地设计模糊c均值(FCM)的隶属度函数,该方法存在以下两个问题。一个事实是设计成本很高;另一个是最优地调优成员函数是困难的。我们使用遗传算法(GA)自动调整隶属函数。将隶属函数编码为遗传算法的一条染色体,并用实际交通数据计算的平均日误差的平均值作为适应度函数。使用实际交通数据和实际路线图进行的实验表明,该方法比传统方法更有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1