2D visual servoïng of wheeled mobile robot by neural networs

R. Zouaoui, Hassen Mekki
{"title":"2D visual servoïng of wheeled mobile robot by neural networs","authors":"R. Zouaoui, Hassen Mekki","doi":"10.1109/ICBR.2013.6729263","DOIUrl":null,"url":null,"abstract":"We are interested in this paper in the 2D visual servoïng for a mobile robot type Koala using radial basis function (RBF) neural network (NN). Seen that the interaction matrix, expressing the relationship between the camera motion and the consequent changes on the visual features, contains parameters to be estimated (depth) and requires a calibration phase of the camera. In more, the model of the robot can contain uncertainties engendered the movement with sliding. An online identification, using NN was proposed to overcome these problems. The RBF NN is used to estimate the block formed by the interaction matrix and the model inverts of the robot. The considered images are described by objects given by four points. Seen that the variables number of the estimated function is important, what can cause a problem of the use of an excessive number of RBFs. As remedy, we used a new approach consists in considering that a single point is sufficient to solve the problem of the 2D visual servoïng of the mobile robot.","PeriodicalId":269516,"journal":{"name":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBR.2013.6729263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We are interested in this paper in the 2D visual servoïng for a mobile robot type Koala using radial basis function (RBF) neural network (NN). Seen that the interaction matrix, expressing the relationship between the camera motion and the consequent changes on the visual features, contains parameters to be estimated (depth) and requires a calibration phase of the camera. In more, the model of the robot can contain uncertainties engendered the movement with sliding. An online identification, using NN was proposed to overcome these problems. The RBF NN is used to estimate the block formed by the interaction matrix and the model inverts of the robot. The considered images are described by objects given by four points. Seen that the variables number of the estimated function is important, what can cause a problem of the use of an excessive number of RBFs. As remedy, we used a new approach consists in considering that a single point is sufficient to solve the problem of the 2D visual servoïng of the mobile robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的轮式移动机器人二维视觉servoïng
我们对使用径向基函数(RBF)神经网络(NN)对移动机器人考拉进行二维视觉servoïng感兴趣。可见,表示摄像机运动与随之产生的视觉特征变化之间关系的交互矩阵包含了需要估计的参数(深度),并且需要摄像机的一个校准阶段。更重要的是,机器人的模型可以包含滑动运动产生的不确定性。为了克服这些问题,提出了一种基于神经网络的在线识别方法。利用RBF神经网络对机器人的交互矩阵和模型逆构成的块进行估计。所考虑的图像由四个点给出的对象来描述。可见,估计函数的变量数是很重要的,什么可能导致使用过多的rbf的问题。作为补救,我们采用了一种新的方法,即考虑单点足以解决移动机器人的二维视觉servoïng问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Introducing time component on the EEG inverse problem 2D visual servoïng of wheeled mobile robot by neural networs Global path planning for mobile robots in large-scale grid environments using genetic algorithms EEG control of an electric wheelchair for disabled persons Remote control of mobile robot through 3D virtual reality environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1