Global path planning for mobile robots in large-scale grid environments using genetic algorithms

Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar
{"title":"Global path planning for mobile robots in large-scale grid environments using genetic algorithms","authors":"Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar","doi":"10.1109/ICBR.2013.6729271","DOIUrl":null,"url":null,"abstract":"Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.","PeriodicalId":269516,"journal":{"name":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBR.2013.6729271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的大规模网格环境下移动机器人全局路径规划
全局路径规划是移动机器人的一个基本问题。在本文中,我们研究了遗传算法(GA)解决大尺度网格地图中全局路径规划问题的能力。首先,我们提出了一种遗传算法来有效地在网格地图中找到(或接近)最优路径。我们精心设计了遗传算子来优化搜索过程。我们还对所提出的GA方法在解质量方面进行了全面的统计评估,并将其与著名的a *算法进行了比较,作为参考。大量的仿真结果表明,在几乎所有的模拟情况下,GA都能找到与A*相同的大环境下的最优路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Introducing time component on the EEG inverse problem 2D visual servoïng of wheeled mobile robot by neural networs Global path planning for mobile robots in large-scale grid environments using genetic algorithms EEG control of an electric wheelchair for disabled persons Remote control of mobile robot through 3D virtual reality environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1