Versatile Signal Distribution Networks for Scalable Placement and Routing of Field-coupled Nanocomputing Technologies

Marcel Walter, B. Hien, R. Wille
{"title":"Versatile Signal Distribution Networks for Scalable Placement and Routing of Field-coupled Nanocomputing Technologies","authors":"Marcel Walter, B. Hien, R. Wille","doi":"10.1109/ISVLSI59464.2023.10238604","DOIUrl":null,"url":null,"abstract":"Field-coupled Nanocomputing (FCN) is a promising beyond-CMOS technology that leverages physical field repulsion instead of electrical current flow to transmit information and perform computations, potentially leading to energy dissipation below the Landauer Limit and clock frequencies in the terahertz regime. Despite recent progress in the experimental realization of FCN using Silicon Dangling Bonds (SiDBs), the physical design of FCN circuits remains a challenging task due to different design constraints compared to CMOS technologies. In this paper, we present three core contributions to the FCN physical design problem, building on top of the fastest heuristic algorithm in the FCN literature, ortho. Via special routing structures called Signal Distribution Networks (SDNs), we 1) reduce area overhead, wire costs, and the number of wire-crossings in routing solutions by approximately 25%, 10%, and 17%, respectively; 2) allow the use of Majority gates to quantify their routing costs, which occur to be immense; and 3) enable the automatic placement and routing of sequential logic for the first time in the literature. Our approach can potentially pave the way for the practical implementation of the FCN technology and its advancement as a viable green alternative to conventional computing technologies.","PeriodicalId":199371,"journal":{"name":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI59464.2023.10238604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Field-coupled Nanocomputing (FCN) is a promising beyond-CMOS technology that leverages physical field repulsion instead of electrical current flow to transmit information and perform computations, potentially leading to energy dissipation below the Landauer Limit and clock frequencies in the terahertz regime. Despite recent progress in the experimental realization of FCN using Silicon Dangling Bonds (SiDBs), the physical design of FCN circuits remains a challenging task due to different design constraints compared to CMOS technologies. In this paper, we present three core contributions to the FCN physical design problem, building on top of the fastest heuristic algorithm in the FCN literature, ortho. Via special routing structures called Signal Distribution Networks (SDNs), we 1) reduce area overhead, wire costs, and the number of wire-crossings in routing solutions by approximately 25%, 10%, and 17%, respectively; 2) allow the use of Majority gates to quantify their routing costs, which occur to be immense; and 3) enable the automatic placement and routing of sequential logic for the first time in the literature. Our approach can potentially pave the way for the practical implementation of the FCN technology and its advancement as a viable green alternative to conventional computing technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
场耦合纳米计算技术的可扩展布局和路由的多功能信号分配网络
场耦合纳米计算(FCN)是一种很有前途的超越cmos的技术,它利用物理场排斥而不是电流来传输信息和执行计算,有可能导致能量耗散低于兰道尔极限和太赫兹频率的时钟频率。尽管最近在利用硅悬空键(sidb)实现FCN的实验方面取得了进展,但与CMOS技术相比,由于不同的设计限制,FCN电路的物理设计仍然是一项具有挑战性的任务。在本文中,我们在FCN文献中最快的启发式算法ortho的基础上,提出了对FCN物理设计问题的三个核心贡献。通过称为信号分配网络(sdn)的特殊路由结构,我们1)将路由解决方案中的面积开销、线路成本和线路交叉次数分别减少了约25%、10%和17%;2)允许使用多数门来量化它们的路由成本,这似乎是巨大的;3)在文献中首次实现了顺序逻辑的自动放置和路由。我们的方法可以潜在地为FCN技术的实际实施铺平道路,并将其作为传统计算技术的可行绿色替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Ferroelectric 2T-(n+1)C Cell to Implement AND-OR Logic in Memory 3D-TTP: Efficient Transient Temperature-Aware Power Budgeting for 3D-Stacked Processor-Memory Systems CellFlow: Automated Standard Cell Design Flow Versatile Signal Distribution Networks for Scalable Placement and Routing of Field-coupled Nanocomputing Technologies Revisiting Trojan Insertion Techniques for Post-Silicon Trojan Detection Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1