On-wafer organic defect review and classification with universal surface enhanced Raman spectroscopy

A. Altun
{"title":"On-wafer organic defect review and classification with universal surface enhanced Raman spectroscopy","authors":"A. Altun","doi":"10.1109/asmc54647.2022.9792487","DOIUrl":null,"url":null,"abstract":"The paper will introduce a novel 300mm wafer defect review and characterization technology based on universal on-wafer surface-enhanced Raman spectroscopy. The technology can perform high-throughput physical and chemical classification of defects using surface-enhanced optical images and enhanced Raman spectroscopy, respectively. The paper will demonstrate test data regarding size distributions, optical images and Raman spectra of particles of process liquids as well as test wafers.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper will introduce a novel 300mm wafer defect review and characterization technology based on universal on-wafer surface-enhanced Raman spectroscopy. The technology can perform high-throughput physical and chemical classification of defects using surface-enhanced optical images and enhanced Raman spectroscopy, respectively. The paper will demonstrate test data regarding size distributions, optical images and Raman spectra of particles of process liquids as well as test wafers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于通用表面增强拉曼光谱的晶圆上有机缺陷综述与分类
本文将介绍一种基于通用晶圆表面增强拉曼光谱的300mm晶圆缺陷检测与表征新技术。该技术可以分别使用表面增强光学图像和增强拉曼光谱对缺陷进行高通量物理和化学分类。本文将展示有关工艺液体和测试晶圆颗粒的尺寸分布、光学图像和拉曼光谱的测试数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-wafer organic defect review and classification with universal surface enhanced Raman spectroscopy Supply crisis parts commodities management during unplanned FAB shutdown recovery Nuisance Rate Improvement of E-beam Defect Classification Real-Time Automated Socket Inspection using Advanced Computer Vision and Machine Learning : DI: Defect Inspection and Reduction Negative Mode E-Beam Inspection of the Contact Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1