Fault tolerant matrix-matrix multiplication: correcting soft errors on-line

Panruo Wu, Chong Ding, Longxiang Chen, Feng Gao, T. Davies, Christer Karlsson, Zizhong Chen
{"title":"Fault tolerant matrix-matrix multiplication: correcting soft errors on-line","authors":"Panruo Wu, Chong Ding, Longxiang Chen, Feng Gao, T. Davies, Christer Karlsson, Zizhong Chen","doi":"10.1145/2133173.2133185","DOIUrl":null,"url":null,"abstract":"Soft errors are one-time events that corrupt the state of a computing system but not its overall functionality. Soft errors normally do not interrupt the execution of the affected program, but the affected computation results can not be trusted any more. A well known technique to correct soft errors in matrix-matrix multiplication is algorithm-based fault tolerance (ABFT). While ABFT achieves much better efficiency than triple modular redundancy (TMR) - a traditional general technique to correct soft errors, both ABFT and TMR detect errors off-line after the computation is finished. This paper extends the traditional ABFT technique from off-line to on-line so that soft errors in matrix-matrix multiplication can be detect in the middle of the computation during the program execution and higher efficiency can be achieved by correcting the corrupted computations in a timely manner. Experimental results demonstrate that the proposed technique can correct one error every ten seconds with negligible (i.e., less than 1%) performance penalty over the ATLAS dgemm().","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2133173.2133185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Soft errors are one-time events that corrupt the state of a computing system but not its overall functionality. Soft errors normally do not interrupt the execution of the affected program, but the affected computation results can not be trusted any more. A well known technique to correct soft errors in matrix-matrix multiplication is algorithm-based fault tolerance (ABFT). While ABFT achieves much better efficiency than triple modular redundancy (TMR) - a traditional general technique to correct soft errors, both ABFT and TMR detect errors off-line after the computation is finished. This paper extends the traditional ABFT technique from off-line to on-line so that soft errors in matrix-matrix multiplication can be detect in the middle of the computation during the program execution and higher efficiency can be achieved by correcting the corrupted computations in a timely manner. Experimental results demonstrate that the proposed technique can correct one error every ten seconds with negligible (i.e., less than 1%) performance penalty over the ATLAS dgemm().
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
容错矩阵-矩阵乘法:在线修正软错误
软错误是一次性事件,会破坏计算系统的状态,但不会破坏其整体功能。软错误通常不会中断受影响程序的执行,但受影响的计算结果不再可信。基于算法的容错(ABFT)是一种众所周知的修正矩阵-矩阵乘法软误差的技术。虽然ABFT比三模冗余(TMR)——一种传统的纠正软错误的通用技术——具有更高的效率,但ABFT和TMR都是在计算完成后离线检测错误。本文将传统的ABFT技术从离线扩展到在线,在程序执行过程中可以在计算过程中检测到矩阵-矩阵乘法中的软错误,并通过及时纠正错误计算来提高效率。实验结果表明,与ATLAS dgemm()相比,所提出的技术可以每十秒纠正一个错误,而性能损失可以忽略不计(即小于1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable randomized least squares solver for dense overdetermined systems A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition Mixed-precision block gram Schmidt orthogonalization Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators On efficient Monte Carlo preconditioners and hybrid Monte Carlo methods for linear algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1