A scalable randomized least squares solver for dense overdetermined systems

Chander Iyer, H. Avron, G. Kollias, Y. Ineichen, C. Carothers, P. Drineas
{"title":"A scalable randomized least squares solver for dense overdetermined systems","authors":"Chander Iyer, H. Avron, G. Kollias, Y. Ineichen, C. Carothers, P. Drineas","doi":"10.1145/2832080.2832083","DOIUrl":null,"url":null,"abstract":"We present a fast randomized least-squares solver for distributed-memory platforms. Our solver is based on the Blendenpik algorithm, but employs a batchwise randomized unitary transformation scheme. The batchwise transformation enables our algorithm to scale the distributed memory vanilla implementation of Blendenpik by up to ×3 and provides up to ×7.5 speedup over a state-of-the-art scalable least-squares solver based on the classic QR based algorithm. Experimental evaluations on terabyte scale matrices demonstrate excellent speedups on up to 16384 cores on a Blue Gene/Q supercomputer.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832080.2832083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a fast randomized least-squares solver for distributed-memory platforms. Our solver is based on the Blendenpik algorithm, but employs a batchwise randomized unitary transformation scheme. The batchwise transformation enables our algorithm to scale the distributed memory vanilla implementation of Blendenpik by up to ×3 and provides up to ×7.5 speedup over a state-of-the-art scalable least-squares solver based on the classic QR based algorithm. Experimental evaluations on terabyte scale matrices demonstrate excellent speedups on up to 16384 cores on a Blue Gene/Q supercomputer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密集超定系统的可伸缩随机最小二乘求解器
针对分布式存储平台,提出了一种快速随机最小二乘求解器。我们的求解器基于Blendenpik算法,但采用了批处理随机化酉变换方案。批处理转换使我们的算法能够将Blendenpik的分布式内存vanilla实现扩展到×3,并提供比基于经典QR算法的最先进的可扩展最小二乘求解器加速到×7.5。在tb规模矩阵上的实验评估表明,在Blue Gene/Q超级计算机上,高达16384个核的加速效果非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable randomized least squares solver for dense overdetermined systems A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition Mixed-precision block gram Schmidt orthogonalization Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators On efficient Monte Carlo preconditioners and hybrid Monte Carlo methods for linear algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1