A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition

E. Niño, Adrian Sandu, Xinwei Deng
{"title":"A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition","authors":"E. Niño, Adrian Sandu, Xinwei Deng","doi":"10.1145/2832080.2832084","DOIUrl":null,"url":null,"abstract":"This paper discusses an efficient parallel implementation of the ensemble Kalman filter based on the modified Cholesky decomposition. The proposed implementation starts with decomposing the domain into sub-domains. In each sub-domain a sparse estimation of the inverse background error covariance matrix is computed via a modified Cholesky decomposition; the estimates are computed concurrently on separate processors. The sparsity of this estimator is dictated by the conditional independence of model components for some radius of influence. Then, the assimilation step is carried out in parallel without the need of inter-processor communication. Once the local analysis states are computed, the analysis sub-domains are mapped back onto the global domain to obtain the analysis ensemble. Computational experiments are performed using the Atmospheric General Circulation Model (SPEEDY) with the T-63 resolution on the Blueridge cluster at Virginia Tech. The number of processors used in the experiments ranges from 96 to 2,048. The proposed implementation outperforms in terms of accuracy the well-known local ensemble transform Kalman filter (LETKF) for all the model variables. The computational time of the proposed implementation is similar to that of the parallel LETKF method (where no covariance estimation is performed). Finally, for the largest number of processors, the proposed parallel implementation is 400 times faster than the serial version of the proposed method.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832080.2832084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper discusses an efficient parallel implementation of the ensemble Kalman filter based on the modified Cholesky decomposition. The proposed implementation starts with decomposing the domain into sub-domains. In each sub-domain a sparse estimation of the inverse background error covariance matrix is computed via a modified Cholesky decomposition; the estimates are computed concurrently on separate processors. The sparsity of this estimator is dictated by the conditional independence of model components for some radius of influence. Then, the assimilation step is carried out in parallel without the need of inter-processor communication. Once the local analysis states are computed, the analysis sub-domains are mapped back onto the global domain to obtain the analysis ensemble. Computational experiments are performed using the Atmospheric General Circulation Model (SPEEDY) with the T-63 resolution on the Blueridge cluster at Virginia Tech. The number of processors used in the experiments ranges from 96 to 2,048. The proposed implementation outperforms in terms of accuracy the well-known local ensemble transform Kalman filter (LETKF) for all the model variables. The computational time of the proposed implementation is similar to that of the parallel LETKF method (where no covariance estimation is performed). Finally, for the largest number of processors, the proposed parallel implementation is 400 times faster than the serial version of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进Cholesky分解的并行集成卡尔曼滤波实现
本文讨论了一种基于改进Cholesky分解的集成卡尔曼滤波器的高效并行实现。建议的实现从将域分解为子域开始。在每个子域上,通过改进的Cholesky分解对逆背景误差协方差矩阵进行稀疏估计;估计是在单独的处理器上并发计算的。该估计量的稀疏性由模型分量在一定影响半径下的条件独立性决定。然后,同化步骤并行进行,不需要处理器间通信。一旦计算出局部分析状态,分析子域就被映射回全局域,以获得分析集成。在弗吉尼亚理工大学的Blueridge集群上使用T-63分辨率的大气环流模型(SPEEDY)进行了计算实验。实验中使用的处理器数量从96到2048不等。对于所有模型变量,所提出的实现在精度方面优于著名的局部集成变换卡尔曼滤波器(LETKF)。所提出的实现的计算时间与并行LETKF方法相似(其中不执行协方差估计)。最后,对于最大数量的处理器,所建议的并行实现比所建议方法的串行版本快400倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable randomized least squares solver for dense overdetermined systems A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition Mixed-precision block gram Schmidt orthogonalization Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators On efficient Monte Carlo preconditioners and hybrid Monte Carlo methods for linear algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1