Mixed-precision block gram Schmidt orthogonalization

I. Yamazaki, S. Tomov, J. Kurzak, J. Dongarra, J. Barlow
{"title":"Mixed-precision block gram Schmidt orthogonalization","authors":"I. Yamazaki, S. Tomov, J. Kurzak, J. Dongarra, J. Barlow","doi":"10.1145/2832080.2832082","DOIUrl":null,"url":null,"abstract":"The mixed-precision Cholesky QR (CholQR) can orthogonalize the columns of a dense matrix with the minimum communication cost. Moreover, its orthogonality error depends only linearly to the condition number of the input matrix. However, when the desired higher-precision is not supported by the hardware, the software-emulated arithmetics are needed, which could significantly increase its computational cost. When there are a large number of columns to be orthogonalized, this computational overhead can have a dramatic impact on the orthogonalization time, and the mixed-precision CholQR can be much slower than the standard CholQR. In this paper, we examine several block variants of the algorithm, which reduce the computational overhead associated with the software-emulated arithmetics, while maintaining the same orthogonality error bound as the mixed-precision CholQR. Our numerical and performance results on multicore CPUs with a GPU, as well as a hybrid CPU/GPU cluster, demonstrate that compared to the mixed-precision CholQR, such a block variant can obtain speedups of up to 7.1× while maintaining about the same order of the numerical errors.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832080.2832082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The mixed-precision Cholesky QR (CholQR) can orthogonalize the columns of a dense matrix with the minimum communication cost. Moreover, its orthogonality error depends only linearly to the condition number of the input matrix. However, when the desired higher-precision is not supported by the hardware, the software-emulated arithmetics are needed, which could significantly increase its computational cost. When there are a large number of columns to be orthogonalized, this computational overhead can have a dramatic impact on the orthogonalization time, and the mixed-precision CholQR can be much slower than the standard CholQR. In this paper, we examine several block variants of the algorithm, which reduce the computational overhead associated with the software-emulated arithmetics, while maintaining the same orthogonality error bound as the mixed-precision CholQR. Our numerical and performance results on multicore CPUs with a GPU, as well as a hybrid CPU/GPU cluster, demonstrate that compared to the mixed-precision CholQR, such a block variant can obtain speedups of up to 7.1× while maintaining about the same order of the numerical errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合精度块克施密特正交化
混合精度乔列斯基QR (CholQR)能够以最小的通信代价对密集矩阵的列进行正交。此外,其正交性误差仅与输入矩阵的条件数线性相关。然而,当硬件不支持所需的更高精度时,就需要采用软件仿真算法,这将大大增加计算成本。当有大量列需要正交化时,这种计算开销会对正交化时间产生巨大影响,并且混合精度的CholQR可能比标准的CholQR慢得多。在本文中,我们研究了该算法的几个块变体,它们减少了与软件仿真算法相关的计算开销,同时保持与混合精度CholQR相同的正交性误差界。我们在带有GPU的多核CPU以及混合CPU/GPU集群上的数值和性能结果表明,与混合精度的CholQR相比,这种块变体可以在保持数值误差大致相同的顺序的情况下获得高达7.1倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable randomized least squares solver for dense overdetermined systems A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition Mixed-precision block gram Schmidt orthogonalization Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators On efficient Monte Carlo preconditioners and hybrid Monte Carlo methods for linear algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1