Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators

A. Haidar, Yulu Jia, P. Luszczek, S. Tomov, A. YarKhan, J. Dongarra
{"title":"Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators","authors":"A. Haidar, Yulu Jia, P. Luszczek, S. Tomov, A. YarKhan, J. Dongarra","doi":"10.1145/2832080.2832085","DOIUrl":null,"url":null,"abstract":"A wide variety of heterogeneous compute resources are available to modern computers, including multiple sockets containing multicore CPUs, one-or-more GPUs of varying power, and coprocessors such as the Intel Xeon Phi. The challenge faced by domain scientists is how to efficiently and productively use these varied resources. For example, in order to use GPUs effectively, the workload must have a greater degree of parallelism than a workload designed for a multicore-CPU. The domain scientist would have to design and schedule an application in multiple degrees of parallelism and task grain sizes in order to obtain efficient performance from the resources. We propose a productive programming model starting from serial code, which achieves parallelism and scalability by using a task-superscalar runtime environment to adapt the computation to the available resources. The adaptation is done at multiple points, including multi-level data partitioning, adaptive task grain sizes, and dynamic task scheduling. The effectiveness of this approach for utilizing multi-way heterogeneous hardware resources is demonstrated by implementing dense linear algebra applications.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832080.2832085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A wide variety of heterogeneous compute resources are available to modern computers, including multiple sockets containing multicore CPUs, one-or-more GPUs of varying power, and coprocessors such as the Intel Xeon Phi. The challenge faced by domain scientists is how to efficiently and productively use these varied resources. For example, in order to use GPUs effectively, the workload must have a greater degree of parallelism than a workload designed for a multicore-CPU. The domain scientist would have to design and schedule an application in multiple degrees of parallelism and task grain sizes in order to obtain efficient performance from the resources. We propose a productive programming model starting from serial code, which achieves parallelism and scalability by using a task-superscalar runtime environment to adapt the computation to the available resources. The adaptation is done at multiple points, including multi-level data partitioning, adaptive task grain sizes, and dynamic task scheduling. The effectiveness of this approach for utilizing multi-way heterogeneous hardware resources is demonstrated by implementing dense linear algebra applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多并行粒度加权动态调度,将数值工作负载卸载到多个不同的加速器
现代计算机可以使用各种各样的异构计算资源,包括包含多核cpu的多个插槽,一个或多个不同功率的gpu,以及Intel Xeon Phi等协处理器。领域科学家面临的挑战是如何有效地利用这些不同的资源。例如,为了有效地使用gpu,工作负载必须比为多核cpu设计的工作负载具有更高程度的并行性。领域科学家必须在多个并行度和任务粒度中设计和调度应用程序,以便从资源中获得有效的性能。我们提出了一种从串行代码开始的生产性编程模型,该模型通过使用任务超标量运行时环境使计算适应可用资源,从而实现并行性和可扩展性。自适应是在多个点上完成的,包括多级数据分区、自适应任务粒度大小和动态任务调度。通过实现密集线性代数应用,证明了该方法在利用多路异构硬件资源方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable randomized least squares solver for dense overdetermined systems A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition Mixed-precision block gram Schmidt orthogonalization Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators On efficient Monte Carlo preconditioners and hybrid Monte Carlo methods for linear algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1