Lei Zhu, Shuangke Liu, F. Allibert, E. Desbonnets, I. Radu, Xinen Zhu, Yumin Lu
{"title":"RF performance of passive components on state-of-art trap rich silicon-on-insulator substrates","authors":"Lei Zhu, Shuangke Liu, F. Allibert, E. Desbonnets, I. Radu, Xinen Zhu, Yumin Lu","doi":"10.1109/VLSI-TSA.2016.7480530","DOIUrl":null,"url":null,"abstract":"Trap rich silicon-on-insulator (TR-SOI) substrates have been widely adopted for high performance RFICs in cellular front-ends over the past few years. With the more stringent loss and harmonic requirements for 4G and even 5G networks, TR-SOI substrate's quality has been improved continuously since its introduction. Two representative types of commercially available TR-SOI substrates are investigated in this paper to demonstrate both small and large signal performance up to 10 GHz. 50 Ohm CPW lines and spiral inductors were fabricated on HR-SOI, TR-SOI, and quartz substrates. The experiment results show that TR-SOI substrates present attenuation coefficient less than 0.2 dB/mm, which is close to that of quartz substrates, and much improved harmonic suppression than HR-SOI substrates.","PeriodicalId":441941,"journal":{"name":"2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2016.7480530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Trap rich silicon-on-insulator (TR-SOI) substrates have been widely adopted for high performance RFICs in cellular front-ends over the past few years. With the more stringent loss and harmonic requirements for 4G and even 5G networks, TR-SOI substrate's quality has been improved continuously since its introduction. Two representative types of commercially available TR-SOI substrates are investigated in this paper to demonstrate both small and large signal performance up to 10 GHz. 50 Ohm CPW lines and spiral inductors were fabricated on HR-SOI, TR-SOI, and quartz substrates. The experiment results show that TR-SOI substrates present attenuation coefficient less than 0.2 dB/mm, which is close to that of quartz substrates, and much improved harmonic suppression than HR-SOI substrates.