Novel intrinsic and extrinsic engineering for high-performance high-density self-aligned InGaAs MOSFETs: Precise channel thickness control and sub-40-nm metal contacts

Jianqiang Lin, D. Antoniadis, J. D. del Alamo
{"title":"Novel intrinsic and extrinsic engineering for high-performance high-density self-aligned InGaAs MOSFETs: Precise channel thickness control and sub-40-nm metal contacts","authors":"Jianqiang Lin, D. Antoniadis, J. D. del Alamo","doi":"10.1109/IEDM.2014.7047104","DOIUrl":null,"url":null,"abstract":"We have fabricated self-aligned tight-pitch InGaAs Quantum-well MOSFETs (QW-MOSFETs) with scaled channel thickness (t<sub>c</sub>) and metal contact length (L<sub>c</sub>) by a novel fabrication process that features precise dimensional control. Impact of t<sub>c</sub> scaling on transport, resistance and short channel effects (SCE) has been studied. A thick channel is favorable for transport, and a mobility of 8800 cm<sup>2</sup>/V·s is obtained with t<sub>c</sub>=11 nm at N<sub>s</sub>=2.6×10<sup>12</sup> cm<sup>-2</sup>. Also, a record g<sub>m,max</sub> of 3.1 mS/μm and R<sub>on</sub> of 190 Ω·μm are obtained in MOSFETs with t<sub>c</sub>=9 nm and gate length L<sub>g</sub>=80 nm. In contrast, a thin channel is beneficial for SCE control. In a device with t<sub>c</sub>=4 nm and L<sub>g</sub>=80 nm, S is 111 mV/dec at V<sub>ds</sub>= 0.5 V. For the first time, working front-end device structures with 40 nm long contacts and gate-to-gate pitch of 150 nm are demonstrated. A new method to study the resistance properties of nanoscale contacts is proposed. We derive a specific contact resistivity between the Mo contact metal and the n<sup>+</sup> InGaAs cap of ρ=(8±2)×10<sup>-9</sup> Ω·cm<sup>2</sup>. We also infer a metal-to-channel resistance of 70 Ω·μm for 40 nm long contacts.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"298 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

We have fabricated self-aligned tight-pitch InGaAs Quantum-well MOSFETs (QW-MOSFETs) with scaled channel thickness (tc) and metal contact length (Lc) by a novel fabrication process that features precise dimensional control. Impact of tc scaling on transport, resistance and short channel effects (SCE) has been studied. A thick channel is favorable for transport, and a mobility of 8800 cm2/V·s is obtained with tc=11 nm at Ns=2.6×1012 cm-2. Also, a record gm,max of 3.1 mS/μm and Ron of 190 Ω·μm are obtained in MOSFETs with tc=9 nm and gate length Lg=80 nm. In contrast, a thin channel is beneficial for SCE control. In a device with tc=4 nm and Lg=80 nm, S is 111 mV/dec at Vds= 0.5 V. For the first time, working front-end device structures with 40 nm long contacts and gate-to-gate pitch of 150 nm are demonstrated. A new method to study the resistance properties of nanoscale contacts is proposed. We derive a specific contact resistivity between the Mo contact metal and the n+ InGaAs cap of ρ=(8±2)×10-9 Ω·cm2. We also infer a metal-to-channel resistance of 70 Ω·μm for 40 nm long contacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能高密度自对准InGaAs mosfet的新型内在和外在工程:精确的沟道厚度控制和sub- 40nm金属触点
我们通过一种具有精确尺寸控制的新型制造工艺,制造了具有可缩放沟道厚度(tc)和金属接触长度(Lc)的自对准紧密间距InGaAs量子阱mosfet (qw - mosfet)。研究了tc结垢对输运、电阻和短通道效应的影响。当tc=11 nm, Ns=2.6×1012 cm-2时,较厚的通道有利于迁移,迁移率为8800 cm2/V·s。在tc=9 nm,栅极长度Lg=80 nm的mosfet中,获得了创纪录的gm,max为3.1 mS/μm, Ron为190 Ω·μm。相比之下,细通道有利于SCE控制。在tc=4 nm, Lg=80 nm的器件中,Vds= 0.5 V时S为111 mV/dec。首次展示了具有40 nm长触点和150 nm栅极间距的工作前端器件结构。提出了一种研究纳米触点电阻特性的新方法。我们推导出Mo接触金属与n+ InGaAs帽之间的比接触电阻率ρ=(8±2)×10-9 Ω·cm2。我们还推断出40 nm长触点的金属-通道电阻为70 Ω·μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NBTI of Ge pMOSFETs: Understanding defects and enabling lifetime prediction 55-µA GexTe1−x/Sb2Te3 superlattice topological-switching random access memory (TRAM) and study of atomic arrangement in Ge-Te and Sb-Te structures GaN-based Gate Injection Transistors for power switching applications Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester Novel intrinsic and extrinsic engineering for high-performance high-density self-aligned InGaAs MOSFETs: Precise channel thickness control and sub-40-nm metal contacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1