Online Handwritten Bangla and Devanagari Character Recognition by using CNN: A Deep Learning Concept

Rajatsubhra Chakraborty, Debadrita Mukherjee, Ankan Bhattacharyya, Himadri Mukherjee, Monoj Kumar Sur, Shibaprasad Sen, K. Roy
{"title":"Online Handwritten Bangla and Devanagari Character Recognition by using CNN: A Deep Learning Concept","authors":"Rajatsubhra Chakraborty, Debadrita Mukherjee, Ankan Bhattacharyya, Himadri Mukherjee, Monoj Kumar Sur, Shibaprasad Sen, K. Roy","doi":"10.1109/ICCE50343.2020.9290566","DOIUrl":null,"url":null,"abstract":"The present experiment deals with online handwriting recognition for two regional languages Bangla and Devanagari using CNN (convolution neural network) a deep learning concept. Our proposed model consists of two convolution and pooling layers and a fully connected network. CNN model give relaxation of producing handcrafted features manually rather generates features, reduce feature dimension automatically and pass the features to a fully connected network for classification purpose. The current experiment is performed on 10000 Bangla basic characters and 1800 Devanagari characters. We have achieved 99.65% and 98.87% recognition accuracy for Bangla and Devanagari character datasets respectively.","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The present experiment deals with online handwriting recognition for two regional languages Bangla and Devanagari using CNN (convolution neural network) a deep learning concept. Our proposed model consists of two convolution and pooling layers and a fully connected network. CNN model give relaxation of producing handcrafted features manually rather generates features, reduce feature dimension automatically and pass the features to a fully connected network for classification purpose. The current experiment is performed on 10000 Bangla basic characters and 1800 Devanagari characters. We have achieved 99.65% and 98.87% recognition accuracy for Bangla and Devanagari character datasets respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用CNN的在线手写孟加拉语和梵语字符识别:一个深度学习概念
本实验使用深度学习概念CNN(卷积神经网络)处理两种区域语言孟加拉语和德瓦纳加里语的在线手写识别。我们提出的模型由两个卷积和池化层和一个全连接网络组成。CNN模型不再需要手工生成特征,而是自动生成特征,自动降维,并将特征传递给全连通网络进行分类。目前的实验使用了1万个孟加拉语基本汉字和1800个梵语汉字。对孟加拉语和德文语字符数据集的识别准确率分别达到了99.65%和98.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realization and Implementation of Optical Reversible Universal Quadruple Logic Gate (ORUQLG) Advanced Design of Transmitting Antenna System for Polarization Modulation Design and Development of Solar Power Hybrid Electric Vehicles Charging Station Performance Analysis of Multilingual Encryption for Enhancing Data Security using Cellular Automata based State Transition Mapping: A Linear Approach Online Handwritten Bangla and Devanagari Character Recognition by using CNN: A Deep Learning Concept
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1