Development of a Quick Test for Conformal Coatings

Prabjit Singh, L. Palmer, Chen Xu, M. Pudas, J. Keeping, M. M. Khaw, Kok Lieh Tan, H. Fu
{"title":"Development of a Quick Test for Conformal Coatings","authors":"Prabjit Singh, L. Palmer, Chen Xu, M. Pudas, J. Keeping, M. M. Khaw, Kok Lieh Tan, H. Fu","doi":"10.23919/empc53418.2021.9584977","DOIUrl":null,"url":null,"abstract":"Conformal coatings are applied to protect printed circuit boards and components mounted on them from the deleterious effects of moisture, particulate matter and corrosive gases. The conventional method of testing the effectiveness of these coatings is to expose the conformally coated hardware to a corrosive environment for extended periods of time — often lasting many months — and determine the mean time to failure. iNEMI’s Conformal Coating Evaluation for Improved Environmental Protection project team is recommending a quicker test method that takes less than a week to evaluate conformal coatings. This method uses the corrosion rates of conformally coated thin films of copper and silver exposed to a sulfur gas environment as a measure if the coating performance. The project team investigated how temperature and humidity impact the corrosion rates of conformally coated copper and silver thin films compared to uncoated films. Performances of acrylic, silicone and atomic layer deposited (ALD) coatings were studied as a function of temperature and relative humidity. The team found that temperature affected the corrosion rates of conformally coated copper and silver thin films, whereas relative humidity had a lesser influence. The team also discovered significant differences in corrosion protection provided by the three coatings that were tested.","PeriodicalId":348887,"journal":{"name":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/empc53418.2021.9584977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conformal coatings are applied to protect printed circuit boards and components mounted on them from the deleterious effects of moisture, particulate matter and corrosive gases. The conventional method of testing the effectiveness of these coatings is to expose the conformally coated hardware to a corrosive environment for extended periods of time — often lasting many months — and determine the mean time to failure. iNEMI’s Conformal Coating Evaluation for Improved Environmental Protection project team is recommending a quicker test method that takes less than a week to evaluate conformal coatings. This method uses the corrosion rates of conformally coated thin films of copper and silver exposed to a sulfur gas environment as a measure if the coating performance. The project team investigated how temperature and humidity impact the corrosion rates of conformally coated copper and silver thin films compared to uncoated films. Performances of acrylic, silicone and atomic layer deposited (ALD) coatings were studied as a function of temperature and relative humidity. The team found that temperature affected the corrosion rates of conformally coated copper and silver thin films, whereas relative humidity had a lesser influence. The team also discovered significant differences in corrosion protection provided by the three coatings that were tested.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保形涂层快速检测方法的研制
保形涂层用于保护印刷电路板和安装在其上的组件免受湿气,颗粒物质和腐蚀性气体的有害影响。测试这些涂层有效性的传统方法是将保形涂层的硬件暴露在腐蚀环境中较长时间-通常持续数月-并确定平均失效时间。iNEMI的适形涂层评估改善环境保护项目团队推荐了一种更快的测试方法,只需不到一周的时间就可以评估适形涂层。这种方法使用铜和银的共形涂层薄膜暴露在硫气体环境中的腐蚀速率作为涂层性能的衡量标准。项目团队研究了温度和湿度如何影响共形涂层铜和银薄膜与未涂层薄膜的腐蚀速率。研究了温度和相对湿度对丙烯酸、有机硅和原子层沉积(ALD)涂层性能的影响。研究小组发现,温度会影响共形涂层铜和银薄膜的腐蚀速率,而相对湿度的影响较小。研究小组还发现,测试的三种涂层在防腐蚀方面存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Throughput Optimization of a Sintering Die Attach Process Thermal Properties of Laser-induced Graphene Films Photothermally Scribed on Bare Polyimide Substrates Packaging Solution for RF SiP with on-top Integrated Antenna Development of a Quick Test for Conformal Coatings Properties of nano-composite SACX0307-(ZnO, TiO2) solders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1