VisTrees: fast indexes for interactive data exploration

HILDA '16 Pub Date : 2016-06-26 DOI:10.1145/2939502.2939507
Muhammad El-Hindi, Zheguang Zhao, Carsten Binnig, Tim Kraska
{"title":"VisTrees: fast indexes for interactive data exploration","authors":"Muhammad El-Hindi, Zheguang Zhao, Carsten Binnig, Tim Kraska","doi":"10.1145/2939502.2939507","DOIUrl":null,"url":null,"abstract":"Visualizations are arguably the most important tool to explore, understand and convey facts about data. As part of interactive data exploration, visualizations might be used to quickly skim through the data and look for patterns. Unfortunately, database systems are not designed to efficiently support these workloads. As a result, visualizations often take very long to produce, creating a significant barrier to interactive data analysis.\n In this paper, we focus on the interactive computation of histograms for data exploration. To address this issue, we present a novel multi-dimensional index structure called VisTree. As a key contribution, this paper presents several techniques to better align the design of multi-dimensional indexes with the needs of visualization tools for data exploration. Our experiments show that the VisTree achieves a speed increase of up to three orders of magnitude compared to traditional multi-dimensional indexes and enables an interactive speed of below 500ms even on large data sets.","PeriodicalId":356971,"journal":{"name":"HILDA '16","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HILDA '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939502.2939507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Visualizations are arguably the most important tool to explore, understand and convey facts about data. As part of interactive data exploration, visualizations might be used to quickly skim through the data and look for patterns. Unfortunately, database systems are not designed to efficiently support these workloads. As a result, visualizations often take very long to produce, creating a significant barrier to interactive data analysis. In this paper, we focus on the interactive computation of histograms for data exploration. To address this issue, we present a novel multi-dimensional index structure called VisTree. As a key contribution, this paper presents several techniques to better align the design of multi-dimensional indexes with the needs of visualization tools for data exploration. Our experiments show that the VisTree achieves a speed increase of up to three orders of magnitude compared to traditional multi-dimensional indexes and enables an interactive speed of below 500ms even on large data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VisTrees:用于交互式数据探索的快速索引
可视化可以说是探索、理解和传达数据事实的最重要工具。作为交互式数据探索的一部分,可视化可以用于快速浏览数据并查找模式。不幸的是,数据库系统的设计不能有效地支持这些工作负载。因此,可视化通常需要很长时间才能生成,这对交互式数据分析造成了重大障碍。在本文中,我们重点研究了用于数据探索的直方图的交互计算。为了解决这个问题,我们提出了一种新的多维索引结构,称为VisTree。作为一项重要贡献,本文提出了几种技术,以更好地将多维索引的设计与数据探索可视化工具的需求结合起来。我们的实验表明,与传统的多维索引相比,VisTree实现了高达三个数量级的速度提升,并且即使在大型数据集上也能实现低于500ms的交互速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VisTrees: fast indexes for interactive data exploration PFunk-H: approximate query processing using perceptual models Towards reliable interactive data cleaning: a user survey and recommendations ModelDB: a system for machine learning model management TrendQuery: a system for interactive exploration of trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1