Manasi Vartak, H. Subramanyam, Wei-En Lee, S. Viswanathan, S. Husnoo, S. Madden, M. Zaharia
{"title":"ModelDB: a system for machine learning model management","authors":"Manasi Vartak, H. Subramanyam, Wei-En Lee, S. Viswanathan, S. Husnoo, S. Madden, M. Zaharia","doi":"10.1145/2939502.2939516","DOIUrl":null,"url":null,"abstract":"Building a machine learning model is an iterative process. A data scientist will build many tens to hundreds of models before arriving at one that meets some acceptance criteria (e.g. AUC cutoff, accuracy threshold). However, the current style of model building is ad-hoc and there is no practical way for a data scientist to manage models that are built over time. As a result, the data scientist must attempt to \"remember\" previously constructed models and insights obtained from them. This task is challenging for more than a handful of models and can hamper the process of sensemaking. Without a means to manage models, there is no easy way for a data scientist to answer questions such as \"Which models were built using an incorrect feature?\", \"Which model performed best on American customers?\" or \"How did the two top models compare?\" In this paper, we describe our ongoing work on ModelDB, a novel end-to-end system for the management of machine learning models. ModelDB clients automatically track machine learning models in their native environments (e.g. scikit-learn, spark.ml), the ModelDB backend introduces a common layer of abstractions to represent models and pipelines, and the ModelDB frontend allows visual exploration and analyses of models via a web-based interface.","PeriodicalId":356971,"journal":{"name":"HILDA '16","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HILDA '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939502.2939516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 197
Abstract
Building a machine learning model is an iterative process. A data scientist will build many tens to hundreds of models before arriving at one that meets some acceptance criteria (e.g. AUC cutoff, accuracy threshold). However, the current style of model building is ad-hoc and there is no practical way for a data scientist to manage models that are built over time. As a result, the data scientist must attempt to "remember" previously constructed models and insights obtained from them. This task is challenging for more than a handful of models and can hamper the process of sensemaking. Without a means to manage models, there is no easy way for a data scientist to answer questions such as "Which models were built using an incorrect feature?", "Which model performed best on American customers?" or "How did the two top models compare?" In this paper, we describe our ongoing work on ModelDB, a novel end-to-end system for the management of machine learning models. ModelDB clients automatically track machine learning models in their native environments (e.g. scikit-learn, spark.ml), the ModelDB backend introduces a common layer of abstractions to represent models and pipelines, and the ModelDB frontend allows visual exploration and analyses of models via a web-based interface.