Towards reliable interactive data cleaning: a user survey and recommendations

HILDA '16 Pub Date : 2016-06-26 DOI:10.1145/2939502.2939511
S. Krishnan, D. Haas, M. Franklin, Eugene Wu
{"title":"Towards reliable interactive data cleaning: a user survey and recommendations","authors":"S. Krishnan, D. Haas, M. Franklin, Eugene Wu","doi":"10.1145/2939502.2939511","DOIUrl":null,"url":null,"abstract":"Data cleaning is frequently an iterative process tailored to the requirements of a specific analysis task. The design and implementation of iterative data cleaning tools presents novel challenges, both technical and organizational, to the community. In this paper, we present results from a user survey (N = 29) of data analysts and infrastructure engineers from industry and academia. We highlight three important themes: (1) the iterative nature of data cleaning, (2) the lack of rigor in evaluating the correctness of data cleaning, and (3) the disconnect between the analysts who query the data and the infrastructure engineers who design the cleaning pipelines. We conclude by presenting a number of recommendations for future work in which we envision an interactive data cleaning system that accounts for the observed challenges.","PeriodicalId":356971,"journal":{"name":"HILDA '16","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HILDA '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939502.2939511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Data cleaning is frequently an iterative process tailored to the requirements of a specific analysis task. The design and implementation of iterative data cleaning tools presents novel challenges, both technical and organizational, to the community. In this paper, we present results from a user survey (N = 29) of data analysts and infrastructure engineers from industry and academia. We highlight three important themes: (1) the iterative nature of data cleaning, (2) the lack of rigor in evaluating the correctness of data cleaning, and (3) the disconnect between the analysts who query the data and the infrastructure engineers who design the cleaning pipelines. We conclude by presenting a number of recommendations for future work in which we envision an interactive data cleaning system that accounts for the observed challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向可靠的交互式数据清理:用户调查和建议
数据清理通常是一个针对特定分析任务的需求量身定制的迭代过程。迭代数据清理工具的设计和实现对社区提出了技术和组织方面的新挑战。在本文中,我们展示了来自工业界和学术界的数据分析师和基础设施工程师的用户调查(N = 29)的结果。我们强调了三个重要的主题:(1)数据清理的迭代性质,(2)评估数据清理正确性时缺乏严谨性,以及(3)查询数据的分析师与设计清理管道的基础设施工程师之间的脱节。最后,我们为未来的工作提出了一些建议,在这些建议中,我们设想了一个能够解决所观察到的挑战的交互式数据清理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VisTrees: fast indexes for interactive data exploration PFunk-H: approximate query processing using perceptual models Towards reliable interactive data cleaning: a user survey and recommendations ModelDB: a system for machine learning model management TrendQuery: a system for interactive exploration of trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1