TrendQuery: a system for interactive exploration of trends

HILDA '16 Pub Date : 2016-06-26 DOI:10.1145/2939502.2939514
N. Kamat, Eugene Wu, Arnab Nandi
{"title":"TrendQuery: a system for interactive exploration of trends","authors":"N. Kamat, Eugene Wu, Arnab Nandi","doi":"10.1145/2939502.2939514","DOIUrl":null,"url":null,"abstract":"The surfacing of trends from data collections such as user-generated content streams and news articles is a popular and important data analysis activity, used in applications such as business intelligence, quantitative stock trading and, social media exploration. Unlike traditional content analysis, trend analysis includes an additional vital time dimension: a trend can be defined as a temporal pattern over a group of semantically related items. The unsupervised discovery of trends is often not sufficient, either due to inadequacies in the trend analysis algorithm, or because the data collection itself does not possess all of the information to identify the trend. Thus, it is necessary for an expert human-in-the-loop to be involved in the process of trend analysis.\n To this end, we introduce TrendQuery, a system designed towards iterative and interactive surfacing of trends. Our system provides a set of trends to the expert, and enumerates iterative operations to curate the result. This process continues until the expert is satisfied with the surfaced trends. Since the space of possible tweaks to the result can be extremely large, the system continually provides feedback and guidance to the expert to prioritize possible operations. Our system allows interactive curation of trends providing better insights than a purely unsupervised approach.","PeriodicalId":356971,"journal":{"name":"HILDA '16","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HILDA '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939502.2939514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The surfacing of trends from data collections such as user-generated content streams and news articles is a popular and important data analysis activity, used in applications such as business intelligence, quantitative stock trading and, social media exploration. Unlike traditional content analysis, trend analysis includes an additional vital time dimension: a trend can be defined as a temporal pattern over a group of semantically related items. The unsupervised discovery of trends is often not sufficient, either due to inadequacies in the trend analysis algorithm, or because the data collection itself does not possess all of the information to identify the trend. Thus, it is necessary for an expert human-in-the-loop to be involved in the process of trend analysis. To this end, we introduce TrendQuery, a system designed towards iterative and interactive surfacing of trends. Our system provides a set of trends to the expert, and enumerates iterative operations to curate the result. This process continues until the expert is satisfied with the surfaced trends. Since the space of possible tweaks to the result can be extremely large, the system continually provides feedback and guidance to the expert to prioritize possible operations. Our system allows interactive curation of trends providing better insights than a purely unsupervised approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TrendQuery:一个交互式趋势探索系统
从用户生成的内容流和新闻文章等数据收集中揭示趋势是一项流行且重要的数据分析活动,用于商业智能、定量股票交易和社交媒体探索等应用。与传统的内容分析不同,趋势分析包括一个额外的重要时间维度:趋势可以定义为一组语义相关项上的时间模式。无监督的趋势发现往往是不够的,要么是由于趋势分析算法的不足,要么是因为数据收集本身不具备识别趋势的所有信息。因此,在趋势分析的过程中,有必要有专家参与。为此,我们介绍了TrendQuery,这是一个设计用于趋势迭代和交互式呈现的系统。我们的系统为专家提供了一组趋势,并列举了迭代操作来管理结果。这个过程一直持续到专家对表面趋势感到满意为止。由于对结果的可能调整空间可能非常大,系统不断向专家提供反馈和指导,以确定可能操作的优先级。我们的系统允许对趋势进行交互式管理,提供比纯粹的无监督方法更好的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VisTrees: fast indexes for interactive data exploration PFunk-H: approximate query processing using perceptual models Towards reliable interactive data cleaning: a user survey and recommendations ModelDB: a system for machine learning model management TrendQuery: a system for interactive exploration of trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1