Thermally stimulated depolarization current - characterization of a multi-layer dielectric stack for semiconductor packages

R. Schaller, F. Maier, R. Mandl
{"title":"Thermally stimulated depolarization current - characterization of a multi-layer dielectric stack for semiconductor packages","authors":"R. Schaller, F. Maier, R. Mandl","doi":"10.1109/ASDAM55965.2022.9966799","DOIUrl":null,"url":null,"abstract":"In this paper, the results of Thermally Stimulated Depolarization Currents (TSDC)-measurements of a complex system of stacked dielectric layers, like typically appearing in semiconductor packages, is presented. Characteristics of the individual isolation layers are presented solely and the results are compared to the stack. The investigated layers are comprising polyimide film, alkali-free glass, polyolefin film and epoxy based mold compound. Measurements have been carried out in the temperature range from 19 - 195°C at varying polarization fields for every material. Various relaxation peaks, originated by different polarization mechanisms within the materials could be observed. A comparison between the TSDC-peaks of the layer stack and the individual materials is shown. Our results demonstrate, that the super positioned spectrum is getting dominated by a single portion, the mold compound.","PeriodicalId":148302,"journal":{"name":"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASDAM55965.2022.9966799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the results of Thermally Stimulated Depolarization Currents (TSDC)-measurements of a complex system of stacked dielectric layers, like typically appearing in semiconductor packages, is presented. Characteristics of the individual isolation layers are presented solely and the results are compared to the stack. The investigated layers are comprising polyimide film, alkali-free glass, polyolefin film and epoxy based mold compound. Measurements have been carried out in the temperature range from 19 - 195°C at varying polarization fields for every material. Various relaxation peaks, originated by different polarization mechanisms within the materials could be observed. A comparison between the TSDC-peaks of the layer stack and the individual materials is shown. Our results demonstrate, that the super positioned spectrum is getting dominated by a single portion, the mold compound.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热激发退极化电流——半导体封装用多层介电堆的表征
本文介绍了热激去极化电流(TSDC)的测量结果,该测量结果是对半导体封装中典型的堆叠介质层的复杂系统的测量。单独给出了各个隔离层的特性,并将结果与堆栈进行了比较。所研究的层由聚酰亚胺膜、无碱玻璃、聚烯烃膜和环氧基模化合物组成。在19 - 195°C的温度范围内对每种材料在不同的极化场下进行了测量。可以观察到材料内部不同极化机制产生的各种弛豫峰。给出了层堆叠和单个材料的tsdc峰之间的比较。我们的结果表明,超定位光谱正在被一个单一的部分所主导,即模具化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymer Coatings for Better Robustness of GaN-based RF Circuits against Corrosion in SiP Biometric identification using shoulder-based PPG sensor Thermally stimulated depolarization current - characterization of a multi-layer dielectric stack for semiconductor packages Importance of Mechanical Stress Study in STI based BCD Technology Advanced ECG holter with 2.4 GHz communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1