{"title":"High Order Bandpass Sigma Delta Interface for Vibratory Gyroscopes","authors":"Yufeng Dong, M. Kraft, W. Redman-White","doi":"10.1109/ICSENS.2005.1597891","DOIUrl":null,"url":null,"abstract":"Previous work on sigma delta (SigmaDelta) interfaces for micromachined vibratory gyroscopes were based on lowpass SigmaDelta modulators. However, for a lowpass SigmaDelta interface the signal band is a relatively small fraction of the sampling frequency fs , which increases the noise aliasing and result in a relatively high noise floor in the signal band. Due to the characteristic of narrowband amplitude-modulated signals of vibratory rate gyroscopes, a bandpass SigmaDelta interface is more attractive. A bandpass SigmaDelta interface is superior as it is relatively immune to 1/f noise compared to a lowpass SigmaDelta interface. To achieve a similar noise floor with a given oversampling ratio (OSR), the sampling frequency of a bandpass SigmaDelta interface can be much lower than that of a lowpass SigmaDelta interface. Furthermore, some high order SigmaDelta loop topologies have favorable noise shaping characteristics for electronic noise originating from the pickoff circuit and signal anti-aliasing. Therefore, the requirements for the electronic circuits can be considerably relaxed","PeriodicalId":119985,"journal":{"name":"IEEE Sensors, 2005.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2005.1597891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Previous work on sigma delta (SigmaDelta) interfaces for micromachined vibratory gyroscopes were based on lowpass SigmaDelta modulators. However, for a lowpass SigmaDelta interface the signal band is a relatively small fraction of the sampling frequency fs , which increases the noise aliasing and result in a relatively high noise floor in the signal band. Due to the characteristic of narrowband amplitude-modulated signals of vibratory rate gyroscopes, a bandpass SigmaDelta interface is more attractive. A bandpass SigmaDelta interface is superior as it is relatively immune to 1/f noise compared to a lowpass SigmaDelta interface. To achieve a similar noise floor with a given oversampling ratio (OSR), the sampling frequency of a bandpass SigmaDelta interface can be much lower than that of a lowpass SigmaDelta interface. Furthermore, some high order SigmaDelta loop topologies have favorable noise shaping characteristics for electronic noise originating from the pickoff circuit and signal anti-aliasing. Therefore, the requirements for the electronic circuits can be considerably relaxed