Lattice-engineered Si1−xGex-buffer on Si(001) for GaP integration

O. Skibitzki, A. Paszuk, F. Hatami, P. Zaumseil, Y. Yamamoto, M. Schubert, A. Trampert, B. Tillack, W. Masselink, T. Hannappel, T. Schroeder
{"title":"Lattice-engineered Si1−xGex-buffer on Si(001) for GaP integration","authors":"O. Skibitzki, A. Paszuk, F. Hatami, P. Zaumseil, Y. Yamamoto, M. Schubert, A. Trampert, B. Tillack, W. Masselink, T. Hannappel, T. Schroeder","doi":"10.1063/1.4864777","DOIUrl":null,"url":null,"abstract":"XRD techniques determined that 270 nm GaP grown on 400 nm Si0.85Ge0.15/Si(001) substrates by MOCVD is single crystalline and pseudomorphic, but carry a 0.07% tensile strain after cooling down to room temperature due to the bigger thermal expansion coefficient of GaP with respect to Si (Fig. 2). TEM and AFM examinations indicated a closed but defective GaP layer (Fig. 3(a)) with low root mean square of roughness (rms) of 3.0 nm for 1 μm2 surface area (Fig. 3(b)). Although TEM studies confirm the absence of misfit dislocations in the pseudomorphic GaP film, growth defects (e.g. stacking faults, microtwins, and anti-phase domains) are detected, concentrating at the GaP/SiGe interface (Fig. 3(c)-(d), Fig. 4). We interpret these growth defects as a residue of the initial 3D island coalescence phase of the GaP film on the Si0.85Ge0.15 buffer. TEM-EDX studies reveal that the observed growth defects are often correlated with stoichiometric inhomogeneities in the GaP film (not shown here). Finally, ToF-SIMS detects sharp heterointerfaces between GaP and SiGe films with a minor level of Ga diffusion into the SiGe buffer (Fig. 5).","PeriodicalId":371483,"journal":{"name":"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4864777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

XRD techniques determined that 270 nm GaP grown on 400 nm Si0.85Ge0.15/Si(001) substrates by MOCVD is single crystalline and pseudomorphic, but carry a 0.07% tensile strain after cooling down to room temperature due to the bigger thermal expansion coefficient of GaP with respect to Si (Fig. 2). TEM and AFM examinations indicated a closed but defective GaP layer (Fig. 3(a)) with low root mean square of roughness (rms) of 3.0 nm for 1 μm2 surface area (Fig. 3(b)). Although TEM studies confirm the absence of misfit dislocations in the pseudomorphic GaP film, growth defects (e.g. stacking faults, microtwins, and anti-phase domains) are detected, concentrating at the GaP/SiGe interface (Fig. 3(c)-(d), Fig. 4). We interpret these growth defects as a residue of the initial 3D island coalescence phase of the GaP film on the Si0.85Ge0.15 buffer. TEM-EDX studies reveal that the observed growth defects are often correlated with stoichiometric inhomogeneities in the GaP film (not shown here). Finally, ToF-SIMS detects sharp heterointerfaces between GaP and SiGe films with a minor level of Ga diffusion into the SiGe buffer (Fig. 5).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Si(001)的栅格工程Si1−xgex缓冲器,用于GaP集成
x射线衍射技术确定270海里GaP种植在400 nm Si0.85Ge0.15 / Si(001)基质金属单结晶和假象,但有0.07%的拉伸应变后冷却到室温由于差距更大的热膨胀系数对Si(图2)。TEM、AFM考试表示一个封闭但有缺陷的缺口层(图3 (a))与低粗糙度均方根(rms) 3.0 nm 1μ平方米面积(图3 (b))。尽管TEM研究证实假晶GaP薄膜中没有错配位错,但仍检测到生长缺陷(如层错、微孪晶和反相畴),并集中在GaP/SiGe界面处(图3(c)-(d)、图4)。我们将这些生长缺陷解释为Si0.85Ge0.15缓冲液上GaP薄膜初始三维岛状聚结阶段的残留。TEM-EDX研究表明,观察到的生长缺陷通常与GaP薄膜的化学计量不均匀性有关(此处未显示)。最后,ToF-SIMS检测到GaP和SiGe薄膜之间尖锐的异质界面,其中Ga扩散到SiGe缓冲液中(图5)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric metal/germanium/metal structure Extraction of GeSn absorption coefficients from photodetector response Effects of DC sputtering conditions on formation of Ge layers on Si substrates by sputter epitaxy method Low temperature growth of SiSn polycrystals with high Sn contents on insulating layers Study of Si-based Ge heteroepitaxy using RPCVD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1