Extended Object Tracking assisted Adaptive Clustering for Radar in Autonomous Driving Applications

Stefan Haag, B. Duraisamy, F. Govaers, W. Koch, M. Fritzsche, J. Dickmann
{"title":"Extended Object Tracking assisted Adaptive Clustering for Radar in Autonomous Driving Applications","authors":"Stefan Haag, B. Duraisamy, F. Govaers, W. Koch, M. Fritzsche, J. Dickmann","doi":"10.1109/SDF.2019.8916658","DOIUrl":null,"url":null,"abstract":"Multiple Extended Object Tracking in autonomous driving scenarios must be applicable in highly varying environments such as highway scenarios as well as in urban and rural environments. In this paper, a flexible UKF-based Interacting Multiple Motion (IMM) model extension for the Random Matrix Model (RMM) framework is introduced for nonlinear models. In addition to that, an adaptive clustering method where the provided tracking prior information is invoked to obtain stable clustering and tracking in varying environments with different objects and varying object types is derived. The effectiveness of the filter and clustering method is demonstrated in a real-world scenario.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Multiple Extended Object Tracking in autonomous driving scenarios must be applicable in highly varying environments such as highway scenarios as well as in urban and rural environments. In this paper, a flexible UKF-based Interacting Multiple Motion (IMM) model extension for the Random Matrix Model (RMM) framework is introduced for nonlinear models. In addition to that, an adaptive clustering method where the provided tracking prior information is invoked to obtain stable clustering and tracking in varying environments with different objects and varying object types is derived. The effectiveness of the filter and clustering method is demonstrated in a real-world scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展目标跟踪辅助雷达自适应聚类在自动驾驶中的应用
自动驾驶场景中的多扩展目标跟踪必须适用于高速公路场景以及城市和农村环境等高度变化的环境。针对非线性模型,提出了一种基于ukf的随机矩阵模型(RMM)框架的多运动交互模型扩展方法。在此基础上,推导了一种自适应聚类方法,利用所提供的跟踪先验信息,在不同对象、不同对象类型的变化环境中获得稳定的聚类和跟踪。在实际场景中验证了过滤和聚类方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ACTIVE - Autonomous Car to Infrastructure Communication Mastering Adverse Environments Extended Object Tracking assisted Adaptive Clustering for Radar in Autonomous Driving Applications Multi-Model Bayesian Kriging for Urban Traffic State Prediction Computer Vision Methods for Automating High Temperature Steel Section Sizing in Thermal Images Comparison of Track to Track fusion methods for nonlinear process and measurement models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1