Computer Vision Methods for Automating High Temperature Steel Section Sizing in Thermal Images

Peng Wang, Yueda Lin, R. Muroiwa, S. Pike, L. Mihaylova
{"title":"Computer Vision Methods for Automating High Temperature Steel Section Sizing in Thermal Images","authors":"Peng Wang, Yueda Lin, R. Muroiwa, S. Pike, L. Mihaylova","doi":"10.1109/SDF.2019.8916635","DOIUrl":null,"url":null,"abstract":"This paper proposes a solution to autonomously measuring steel sections with images captured by a monocular, uncalibrated thermal camera. A fast structural random forest algorithm extracts the edges of the steel sections from sequentially coming image data. Two approaches are proposed that recognize the edges and remotely evaluate the size of the manufacturing objects of interest, which will facilitate automating the steel manufacturing process. Four sets of experiments are conducted, and the results show that our method achieves accurate dimension measuring results, with a root mean square error less than 2.5 mm, which is the maximum tolerance bound of the manufacturing process.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a solution to autonomously measuring steel sections with images captured by a monocular, uncalibrated thermal camera. A fast structural random forest algorithm extracts the edges of the steel sections from sequentially coming image data. Two approaches are proposed that recognize the edges and remotely evaluate the size of the manufacturing objects of interest, which will facilitate automating the steel manufacturing process. Four sets of experiments are conducted, and the results show that our method achieves accurate dimension measuring results, with a root mean square error less than 2.5 mm, which is the maximum tolerance bound of the manufacturing process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热图像中高温型钢截面尺寸自动化的计算机视觉方法
本文提出了一种利用单目、未校准热像仪捕获的图像自动测量钢截面的解决方案。一种快速结构随机森林算法从序列图像数据中提取钢截面的边缘。提出了两种方法来识别边缘和远程评估感兴趣的制造对象的尺寸,这将促进钢铁制造过程的自动化。进行了四组实验,结果表明,该方法获得了准确的尺寸测量结果,均方根误差小于2.5 mm,这是制造过程的最大公差界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ACTIVE - Autonomous Car to Infrastructure Communication Mastering Adverse Environments Extended Object Tracking assisted Adaptive Clustering for Radar in Autonomous Driving Applications Multi-Model Bayesian Kriging for Urban Traffic State Prediction Computer Vision Methods for Automating High Temperature Steel Section Sizing in Thermal Images Comparison of Track to Track fusion methods for nonlinear process and measurement models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1