Ultra-Low power neuromorphic computing with spin-torque devices

M. Sharad, Deliang Fan, K. Yogendra, K. Roy
{"title":"Ultra-Low power neuromorphic computing with spin-torque devices","authors":"M. Sharad, Deliang Fan, K. Yogendra, K. Roy","doi":"10.1109/E3S.2013.6705865","DOIUrl":null,"url":null,"abstract":"Emerging spin transfer torque (ST) devices such as lateral spin valves and domain wall magnets may lead to ultra-low-voltage, current-mode, spin-torque switches that can offer attractive computing capabilities, beyond digital switches. This paper reviews our work on ST-based non-Boolean data-processing applications, like neural-networks, which involve analog processing. Integration of such spin-torque devices with charge-based devices like CMOS can lead to highly energy-efficient information processing hardware for applicatons like pattern-matching, neuromorphic-computing, image-processing and data-conversion. Simulation results for analog image processing and associative computing has shown the possibility of ~100X improvement in energy efficiency as compared to a 15nm CMOS ASIC.","PeriodicalId":231837,"journal":{"name":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E3S.2013.6705865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Emerging spin transfer torque (ST) devices such as lateral spin valves and domain wall magnets may lead to ultra-low-voltage, current-mode, spin-torque switches that can offer attractive computing capabilities, beyond digital switches. This paper reviews our work on ST-based non-Boolean data-processing applications, like neural-networks, which involve analog processing. Integration of such spin-torque devices with charge-based devices like CMOS can lead to highly energy-efficient information processing hardware for applicatons like pattern-matching, neuromorphic-computing, image-processing and data-conversion. Simulation results for analog image processing and associative computing has shown the possibility of ~100X improvement in energy efficiency as compared to a 15nm CMOS ASIC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自旋扭矩装置的超低功耗神经形态计算
新兴的自旋转移扭矩(ST)器件,如横向自旋阀和畴壁磁铁,可能会导致超低电压,电流模式,自旋扭矩开关,可以提供有吸引力的计算能力,超越数字开关。本文回顾了我们在基于st的非布尔数据处理应用方面的工作,如神经网络,它涉及模拟处理。将这种自旋扭矩器件与CMOS等基于电荷的器件集成,可以为模式匹配、神经形态计算、图像处理和数据转换等应用带来高能效的信息处理硬件。模拟图像处理和关联计算的仿真结果表明,与15nm CMOS ASIC相比,该ASIC的能效可能提高约100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Device design considerations for ultra-thin body non-hysteretic negative capacitance FETs Ultra-Low power neuromorphic computing with spin-torque devices Power-efficient server utilization in compute clouds Energy transparency from hardware to software Prospects for high-aspect-ratio FinFETs in low-power logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1