26.1 A 1mW 71.5dB SNDR 50MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC

Yong Lim, M. Flynn
{"title":"26.1 A 1mW 71.5dB SNDR 50MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC","authors":"Yong Lim, M. Flynn","doi":"10.1109/ISSCC.2015.7063124","DOIUrl":null,"url":null,"abstract":"The SAR-assisted pipeline ADC is an energy-efficient architecture for high resolution [1]. Consisting of two low-resolution charge-redistribution SARADCs coupled by a residue amplifier, a SAR-assisted pipeline ADC relaxes the noise requirements of the second stage and enhances the overall ADC speed while maintaining excellent power efficiency [1-4]. However, designs reported in [1,2] rely on power-hungry telescopic amplifiers that also limit the available inter-stage residue gain due to low output swing. A lower-power alternative is a dynamic amplifier, which operates as an open-loop time-domain integrator [3,4]. Although time-domain integration provides the benefit of noise filtering, the calibration required to achieve an accurate residue gain increases design complexity and test cost, and limits robustness. We introduce an uncalibrated fully differential ring-amplifier-based 13b 50MS/s rail-to-rail input swing SAR-assisted pipeline ADC with Waiden and Schreier (SNDR) FoMs of 6.9fJ/conversion-step and 174.9dB, respectively. We also present an improved DAC switching technique that further reduces the first DAC energy consumption and also reduces the DAC errors.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The SAR-assisted pipeline ADC is an energy-efficient architecture for high resolution [1]. Consisting of two low-resolution charge-redistribution SARADCs coupled by a residue amplifier, a SAR-assisted pipeline ADC relaxes the noise requirements of the second stage and enhances the overall ADC speed while maintaining excellent power efficiency [1-4]. However, designs reported in [1,2] rely on power-hungry telescopic amplifiers that also limit the available inter-stage residue gain due to low output swing. A lower-power alternative is a dynamic amplifier, which operates as an open-loop time-domain integrator [3,4]. Although time-domain integration provides the benefit of noise filtering, the calibration required to achieve an accurate residue gain increases design complexity and test cost, and limits robustness. We introduce an uncalibrated fully differential ring-amplifier-based 13b 50MS/s rail-to-rail input swing SAR-assisted pipeline ADC with Waiden and Schreier (SNDR) FoMs of 6.9fJ/conversion-step and 174.9dB, respectively. We also present an improved DAC switching technique that further reduces the first DAC energy consumption and also reduces the DAC errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
26.1 A 1mW 71.5dB SNDR 50MS/S 13b全差分环放大器sar辅助流水线ADC
sar辅助管道ADC是一种高分辨率的节能架构[1]。sar辅助的流水线ADC由两个低分辨率电荷再分配的saradc和一个残差放大器组成,降低了第二级的噪声要求,提高了整体ADC速度,同时保持了优异的功率效率[1-4]。然而,在[1,2]中报道的设计依赖于耗电的伸缩放大器,由于输出摆幅低,这也限制了可用的级间剩余增益。一种低功耗的替代方案是动态放大器,它作为开环时域积分器工作[3,4]。虽然时域集成提供了噪声滤波的好处,但实现准确剩余增益所需的校准增加了设计复杂性和测试成本,并限制了鲁棒性。我们介绍了一种未经校准的全差分环形放大器,基于13b 50MS/s轨对轨输入摆幅sar辅助管道ADC,其waden和Schreier (SNDR)波形分别为6.9fJ/转换步长和174.9dB。我们还提出了一种改进的DAC开关技术,该技术进一步降低了第一DAC的能量消耗并降低了DAC误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1