Lixue Kuang, B. Chi, Haikun Jia, Zuochang Ye, Wen Jia, Zhihua Wang
{"title":"Co-design of 60GHz wideband front-end IC with on-chip Tx/Rx switch based on passive macro-modeling","authors":"Lixue Kuang, B. Chi, Haikun Jia, Zuochang Ye, Wen Jia, Zhihua Wang","doi":"10.1109/RFIC.2013.6569531","DOIUrl":null,"url":null,"abstract":"Summary form only given. Co-design of 60GHz wideband front-end IC with on-chip Tx/Rx switch in 65nm CMOS is presented. Passive macro-modeling (pmm) is utilized to convert S-parameter files from passive component EM simulations to state-space models in circuit netlist format which could be used in commercial SPICE simulator for various analyses without convergence issues. The co-design of on-chip switch and LNA/PA could achieve wideband matching and reduce the effects of insertion loss of on-chip Tx/Rx switch. Combining with gain boosting technique in LNA design and lumped-component based design methodology, the implemented 60GHz front-end IC with on-chip Tx/Rx switch achieves 3dB gain bandwidth of 12GHz with maximum gain 17.8dB and minimum NF 5.6dB in Rx mode and 3dB gain bandwidth of 10GHz with saturated output power 5.6dBm in Tx mode, and only consumes 1.0mm×1.2mm die area (including pads).","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary form only given. Co-design of 60GHz wideband front-end IC with on-chip Tx/Rx switch in 65nm CMOS is presented. Passive macro-modeling (pmm) is utilized to convert S-parameter files from passive component EM simulations to state-space models in circuit netlist format which could be used in commercial SPICE simulator for various analyses without convergence issues. The co-design of on-chip switch and LNA/PA could achieve wideband matching and reduce the effects of insertion loss of on-chip Tx/Rx switch. Combining with gain boosting technique in LNA design and lumped-component based design methodology, the implemented 60GHz front-end IC with on-chip Tx/Rx switch achieves 3dB gain bandwidth of 12GHz with maximum gain 17.8dB and minimum NF 5.6dB in Rx mode and 3dB gain bandwidth of 10GHz with saturated output power 5.6dBm in Tx mode, and only consumes 1.0mm×1.2mm die area (including pads).