T. Matsuzaki, T. Onuki, S. Nagatsuka, H. Inoue, T. Ishizu, Y. Ieda, Naoto Yamade, H. Miyairi, M. Sakakura, T. Atsumi, Y. Shionoiri, K. Kato, T. Okuda, Yoshitaka Yamamoto, Masahiro Fujita, J. Koyama, S. Yamazaki
{"title":"16.9 A 128kb 4b/cell nonvolatile memory with crystalline In-Ga-Zn oxide FET using Vt, cancel write method","authors":"T. Matsuzaki, T. Onuki, S. Nagatsuka, H. Inoue, T. Ishizu, Y. Ieda, Naoto Yamade, H. Miyairi, M. Sakakura, T. Atsumi, Y. Shionoiri, K. Kato, T. Okuda, Yoshitaka Yamamoto, Masahiro Fujita, J. Koyama, S. Yamazaki","doi":"10.1109/ISSCC.2015.7063048","DOIUrl":null,"url":null,"abstract":"As the number of devices connected to the Internet increases, servers and mobile devices must process increasingly large volumes of data, and also accommodate the increasing demand for high-speed and large-capacity working memory keeping the power consumption low. This need is being fulfilled by emerging devices, such as resistive RAM, phase-change RAM, and MRAM [1], which realize high-speed, high-density and nonvolatile memory, significantly enhancing the performance of CPUs with integrated memories.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As the number of devices connected to the Internet increases, servers and mobile devices must process increasingly large volumes of data, and also accommodate the increasing demand for high-speed and large-capacity working memory keeping the power consumption low. This need is being fulfilled by emerging devices, such as resistive RAM, phase-change RAM, and MRAM [1], which realize high-speed, high-density and nonvolatile memory, significantly enhancing the performance of CPUs with integrated memories.