Global rate optimality of integral curve estimators in high order tensor models

C. Banerjee, Людмила Александровна Саханенко, L. Sakhanenko, David C. Zhu
{"title":"Global rate optimality of integral curve estimators in high order tensor models","authors":"C. Banerjee, Людмила Александровна Саханенко, L. Sakhanenko, David C. Zhu","doi":"10.4213/tvp5534","DOIUrl":null,"url":null,"abstract":"Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным.","PeriodicalId":132929,"journal":{"name":"Teoriya Veroyatnostei i ee Primeneniya","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teoriya Veroyatnostei i ee Primeneniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tvp5534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高阶张量模型中积分曲线估计的全局速率最优性
受神经成像应用的启发,我们正在考虑在高阶张力模型中建立一个全球最低限度的下限。具体来说,我们所描述的方法使我们能够获得一个全球最小限度的边界来评估o . carmichael和2015年第二作者工作中提出的积分曲线。实际工作的理论结果保证,用于追踪活人脑中复杂的纤维结构和基于高角度分辨率mri (HARDI)的数据的评估不仅在局部而且在全球都是最佳的。因此,全球渐近风险指数的最小边界将为整个图像区域的测量方法提供量子化不确定性。除了理论结果外,还进行了广泛的实证研究,以确定神经可视化协议中梯度方向的最佳数量,我们进一步通过分析活生生的人的大脑扫描来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hellinger distance estimation for nonregular spectra On the sum of Gaussian martingale and an independent fractional Brownian motion On sub-gaussian concentration of missing mass Turnpikes in finite Markov decision processes and random walk Optimal information usage in binary sequential hypothesis testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1