S. Huang, Q. Jiang, K. Wei, G. Liu, X. Wang, Y. Zheng, B. Sun, C. Zhao, H. Liu, Z. Jin, X. Liu, H. Wang, S. Liu, Y. Lu, C. Liu, S. Yang, Z. Tang, J. Zhang, Y. Hao, K. J. Chen
{"title":"High-temperature low-damage gate recess technique and ozone-assisted ALD-grown Al2O3 gate dielectric for high-performance normally-off GaN MIS-HEMTs","authors":"S. Huang, Q. Jiang, K. Wei, G. Liu, X. Wang, Y. Zheng, B. Sun, C. Zhao, H. Liu, Z. Jin, X. Liu, H. Wang, S. Liu, Y. Lu, C. Liu, S. Yang, Z. Tang, J. Zhang, Y. Hao, K. J. Chen","doi":"10.1109/IEDM.2014.7047071","DOIUrl":null,"url":null,"abstract":"A high-temperature (180 °C) gate recess technique featuring low damage and in-situ self-clean capability, in combination with O<sub>3</sub>-assisted atomic-layer-deposition (ALD) of Al<sub>2</sub>O<sub>3</sub> gate dielectric, is developed for fabrication of high performance normally-off AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs), which exhibit a threshold voltage of +1.6 V, a pulsed drive current of 1.1 A/mm, and low dynamic ON-resistance under hard-switching operation. Chlorine-based dry-etching residues (e.g. AlCl<sub>3</sub> and GaCl<sub>3</sub>) are significantly reduced by increasing the wafer temperature during the gate recess to their characteristic desorption temperature, while defective bonds like Al-O-H and positive fixed charges in ALD-Al<sub>2</sub>O<sub>3</sub> are significantly suppressed by substitution of H<sub>2</sub>O with O<sub>3</sub> precursor.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"33 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
A high-temperature (180 °C) gate recess technique featuring low damage and in-situ self-clean capability, in combination with O3-assisted atomic-layer-deposition (ALD) of Al2O3 gate dielectric, is developed for fabrication of high performance normally-off AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs), which exhibit a threshold voltage of +1.6 V, a pulsed drive current of 1.1 A/mm, and low dynamic ON-resistance under hard-switching operation. Chlorine-based dry-etching residues (e.g. AlCl3 and GaCl3) are significantly reduced by increasing the wafer temperature during the gate recess to their characteristic desorption temperature, while defective bonds like Al-O-H and positive fixed charges in ALD-Al2O3 are significantly suppressed by substitution of H2O with O3 precursor.