Mohammad Azari, Nasim Habibi, M. Abolbashari, F. Farahi
{"title":"Hyperspectral scanning white light interferometry based on compressive imaging","authors":"Mohammad Azari, Nasim Habibi, M. Abolbashari, F. Farahi","doi":"10.1117/12.2213101","DOIUrl":null,"url":null,"abstract":"We have developed a compressive hyperspectral imaging system that is based on single-pixel camera architecture. We have incorporated the developed system in a scanning white-light interferometer (SWLI) and showed that replacing SWLI’s CCD-based camera by the compressive hyperspectral imaging system, we have access to high-resolution multispectral images of interferometer’s fringes. Using these multi-spectral images, the system is capable of simultaneous spectroscopy of the surface, which can be used, for example, to eliminate the effect of surface contamination and providing new spectral information for fringe signal analysis which could be used to reduce the need for vertical scan, therefore making height measurement more tolerant to object’s position.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE OPTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2213101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We have developed a compressive hyperspectral imaging system that is based on single-pixel camera architecture. We have incorporated the developed system in a scanning white-light interferometer (SWLI) and showed that replacing SWLI’s CCD-based camera by the compressive hyperspectral imaging system, we have access to high-resolution multispectral images of interferometer’s fringes. Using these multi-spectral images, the system is capable of simultaneous spectroscopy of the surface, which can be used, for example, to eliminate the effect of surface contamination and providing new spectral information for fringe signal analysis which could be used to reduce the need for vertical scan, therefore making height measurement more tolerant to object’s position.