Prediction of mixed-mode interfacial fracture from cohesive zone finite element model: Testing and determination of fracture process parameters

S. Y. Y. Leung, M. Sadeghinia, H. Pape, L. Ernst
{"title":"Prediction of mixed-mode interfacial fracture from cohesive zone finite element model: Testing and determination of fracture process parameters","authors":"S. Y. Y. Leung, M. Sadeghinia, H. Pape, L. Ernst","doi":"10.1109/ESIME.2011.5765852","DOIUrl":null,"url":null,"abstract":"Delamination between copper and epoxy molding compound (EMC) is one of the common failure modes in packages due to relatively weak adhesion at the interface. Delamination is difficult to predict because a package is often with a complex structure design constructed with different materials and under combined normal and shear loading. Development of cohesive zone elements applied in FEM has emerged into the application of cohesive zones as an effective tool for crack propagation simulation. In this study, a methodology to obtain useful parameters for cohesive zone modeling from experimental measurements is proposed. The approach is demonstrated with the adhesive joint between epoxy molding compound and copper that was under residual stresses and applied mixed-mode loading. The proposed approach to determine the traction-separation function does not rely on the uncertainties of crack tip stresses. The predicted load-displacement result is matched with experimental measurement results at the crack propagation region. Package delamination can be predicted by implementing the proposed testing and modeling scheme within the cohesive zone model.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Delamination between copper and epoxy molding compound (EMC) is one of the common failure modes in packages due to relatively weak adhesion at the interface. Delamination is difficult to predict because a package is often with a complex structure design constructed with different materials and under combined normal and shear loading. Development of cohesive zone elements applied in FEM has emerged into the application of cohesive zones as an effective tool for crack propagation simulation. In this study, a methodology to obtain useful parameters for cohesive zone modeling from experimental measurements is proposed. The approach is demonstrated with the adhesive joint between epoxy molding compound and copper that was under residual stresses and applied mixed-mode loading. The proposed approach to determine the traction-separation function does not rely on the uncertainties of crack tip stresses. The predicted load-displacement result is matched with experimental measurement results at the crack propagation region. Package delamination can be predicted by implementing the proposed testing and modeling scheme within the cohesive zone model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合区有限元模型预测混合模式界面断裂:断裂过程参数的测试与确定
铜与环氧树脂复合材料(EMC)之间的分层是封装中常见的失效模式之一,因为其界面的附着力相对较弱。分层是很难预测的,因为一个包往往是一个复杂的结构设计,由不同的材料和组合的正常和剪切载荷。黏结区单元在有限元中的应用已经发展到将黏结区作为一种有效的裂纹扩展模拟工具。在本研究中,提出了一种从实验测量中获得有用参数的方法。最后以受残余应力和混合模式载荷作用的环氧模塑复合材料与铜的粘接接头为例进行了验证。提出的牵引分离函数的确定方法不依赖于裂纹尖端应力的不确定性。在裂纹扩展区域,荷载-位移预测结果与实验测量结果吻合较好。通过在内聚区模型内实现所提出的测试和建模方案,可以预测封装分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of metaheuristic algorithms for simulation based OPF computation Challenges of power electronic packaging and modeling Impact of VDMOS source metallization ageing in 3D FEM wire lift off modeling Assessment of thermo mechanical properties of crosslinked epoxy mesoscale approach — Preliminary results FEA study on electrical interconnects for a power QFN package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1