R. Goda, S. Amakawa, K. Katayama, K. Takano, T. Yoshida, M. Fujishima
{"title":"Modeling of wideband decoupling power line for millimeter-wave CMOS circuits","authors":"R. Goda, S. Amakawa, K. Katayama, K. Takano, T. Yoshida, M. Fujishima","doi":"10.1109/RFIT.2015.7377917","DOIUrl":null,"url":null,"abstract":"Wideband decoupling for millimeter-wave circuits can be achieved using a transmission line having an extremely low characteristic impedance. The characteristic impedance of such a line can be estimated at high frequencies by measuring the input impedance of open and shorted stubs. However, since the propagation constant cannot be estimated reliably, a circuit model applicable to low frequencies has not yet been established. In this study, we extract the transmission-line parameters at low frequencies and build a circuit model using the RLGC parameters. This model is verified by comparing the results obtained from a circuit simulation and measurement data up to 40 GHz.","PeriodicalId":422369,"journal":{"name":"2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2015.7377917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Wideband decoupling for millimeter-wave circuits can be achieved using a transmission line having an extremely low characteristic impedance. The characteristic impedance of such a line can be estimated at high frequencies by measuring the input impedance of open and shorted stubs. However, since the propagation constant cannot be estimated reliably, a circuit model applicable to low frequencies has not yet been established. In this study, we extract the transmission-line parameters at low frequencies and build a circuit model using the RLGC parameters. This model is verified by comparing the results obtained from a circuit simulation and measurement data up to 40 GHz.