High-drive current (>1MA/cm2) and highly nonlinear (>103) TiN/amorphous-Silicon/TiN scalable bidirectional selector with excellent reliability and its variability impact on the 1S1R array performance
Leqi Zhang, B. Govoreanu, A. Redolfi, D. Crotti, H. Hody, V. Paraschiv, S. Cosemans, C. Adelmann, T. Witters, S. Clima, Yangyin Chen, P. Hendrickx, D. Wouters, G. Groeseneken, M. Jurczak
{"title":"High-drive current (>1MA/cm2) and highly nonlinear (>103) TiN/amorphous-Silicon/TiN scalable bidirectional selector with excellent reliability and its variability impact on the 1S1R array performance","authors":"Leqi Zhang, B. Govoreanu, A. Redolfi, D. Crotti, H. Hody, V. Paraschiv, S. Cosemans, C. Adelmann, T. Witters, S. Clima, Yangyin Chen, P. Hendrickx, D. Wouters, G. Groeseneken, M. Jurczak","doi":"10.1109/IEDM.2014.7047000","DOIUrl":null,"url":null,"abstract":"An optimized TiN/amorphous-Silicon/TiN (MSM) two-terminal bidirectional selector is proposed for high density RRAM arrays. The devices show superior performance with high drive current exceeding 1MA/cm2 and half-bias nonlinearity of 1500. Excellent reliability is fully demonstrated on 40nm-size crossbar structures, with statistical ability to withstand bipolar cycling of over 106 cycles at drive current conditions and thermal stability of device operation exceeding 3hours at 125°C. Furthermore, for the first time, we address the impact of selector variability in a 1S1R memory array, by including circuit simulations in a Monte Carlo loop and point out the importance of selector variability for the low resistive state and its implications on the read margin and power consumption.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
An optimized TiN/amorphous-Silicon/TiN (MSM) two-terminal bidirectional selector is proposed for high density RRAM arrays. The devices show superior performance with high drive current exceeding 1MA/cm2 and half-bias nonlinearity of 1500. Excellent reliability is fully demonstrated on 40nm-size crossbar structures, with statistical ability to withstand bipolar cycling of over 106 cycles at drive current conditions and thermal stability of device operation exceeding 3hours at 125°C. Furthermore, for the first time, we address the impact of selector variability in a 1S1R memory array, by including circuit simulations in a Monte Carlo loop and point out the importance of selector variability for the low resistive state and its implications on the read margin and power consumption.