Quad-band receiver front-end module using SiGe BiCMOS MMICs and LTCC triplexer

T. Kaho, Y. Yamaguchi, T. Nakagawa, Shinpei Oshima
{"title":"Quad-band receiver front-end module using SiGe BiCMOS MMICs and LTCC triplexer","authors":"T. Kaho, Y. Yamaguchi, T. Nakagawa, Shinpei Oshima","doi":"10.1109/RFIT.2015.7377879","DOIUrl":null,"url":null,"abstract":"This paper describes the design and measurement of a quad-band low noise receiver front-end module. It consists of a quintplexer and receiver front-end ICs. The quintplexer is consisted of a low loss triplexer fabricated using low temperature co-fired ceramic (LTCC) technology, a commercial duplexer, and a commercial band-pass filter. The receiver front-end ICs were fabricated using 0.25 μm SiGe BiCMOS process technology and consists of wideband variable gain low noise amplifiers, step attenuators, and down-conversion mixers. The module can concurrently receive quad-band signals in frequencies at 300 MHz, 900 MHz, 2.4GHz, and 5 GHz. The quad-band module is 5 × 5 cm in size. The measured noise figures were under 4.9 dB and the conversion gain were above 24 dB at the frequencies of 300 MHz, 900 MHz, and 2.4 GHz. At the 5GHz frequency, the measured noise figures was under 6.2 dB, and conversion gain was above 16 dB.","PeriodicalId":422369,"journal":{"name":"2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2015.7377879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the design and measurement of a quad-band low noise receiver front-end module. It consists of a quintplexer and receiver front-end ICs. The quintplexer is consisted of a low loss triplexer fabricated using low temperature co-fired ceramic (LTCC) technology, a commercial duplexer, and a commercial band-pass filter. The receiver front-end ICs were fabricated using 0.25 μm SiGe BiCMOS process technology and consists of wideband variable gain low noise amplifiers, step attenuators, and down-conversion mixers. The module can concurrently receive quad-band signals in frequencies at 300 MHz, 900 MHz, 2.4GHz, and 5 GHz. The quad-band module is 5 × 5 cm in size. The measured noise figures were under 4.9 dB and the conversion gain were above 24 dB at the frequencies of 300 MHz, 900 MHz, and 2.4 GHz. At the 5GHz frequency, the measured noise figures was under 6.2 dB, and conversion gain was above 16 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四频接收器前端模块采用SiGe BiCMOS mmic和LTCC三工器
本文介绍了一种四波段低噪声接收机前端模块的设计与测量。它由五分复用器和接收前端ic组成。该五工器由使用低温共烧陶瓷(LTCC)技术制造的低损耗三工器、商用双工器和商用带通滤波器组成。接收机前端集成电路采用0.25 μm SiGe BiCMOS工艺技术,由宽带变增益低噪声放大器、阶跃衰减器和下变频混频器组成。该模块可同时接收频率为300mhz、900mhz、2.4GHz和5ghz的四频信号。四波段模块尺寸为5 × 5厘米。在300 MHz、900 MHz和2.4 GHz频率下,测量噪声值在4.9 dB以下,转换增益在24 dB以上。在5GHz频率下,测量噪声值在6.2 dB以下,转换增益在16 dB以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-speed III-V devices for millimeter-wave receiver applications (Invited) A low-power high-Q matching LNA with small-size matching calibration circuit for low power receiver A low noise amplifier with coupled matching structure for V-band applications Cryogenic low noise amplifier for phased array antenna A 76–81 GHz high efficiency power amplifier for phased array automotive radar applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1