I. Bar-Joseph, J. Zucker, B. Miller, U. Koren, D. Chemla
{"title":"Compositional Dependence of the Quantum Confined Stark Effect in Quaternary Quantum Wells","authors":"I. Bar-Joseph, J. Zucker, B. Miller, U. Koren, D. Chemla","doi":"10.1364/qwoe.1989.tub1","DOIUrl":null,"url":null,"abstract":"Quantum well modulators require strict control over the wavelength of the exciton transition in order to minimize insertion loss and maximize voltage sensitivity at the desired wavelength of operation. Within the quaternary material system In\n x\n Ga1−\n x\n As\n y\n P1−\n y\n , there are two parameters which can be varied in order to tune the bandgap: the thickness of the quantum well layer and its composition. Tuning the bandgap by means of well size alone is of limited usefulness since the rate at which the exciton energy shifts with field drastically decreases as well width decreases 1. In this paper, we demonstrate for the first time that the compositional flexibility of quaternary quantum wells can be used to obtain field-induced shifts larger than those obtainable in InGaAs quantum wells, yielding enhanced electroabsorption and electrorefraction. We show that quaternary devices can fill a serious need for quantum well optical modulators in the wavelength range 1.3 µm to 1.55 µm for optical communications.","PeriodicalId":205579,"journal":{"name":"Quantum Wells for Optics and Optoelectronics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Wells for Optics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/qwoe.1989.tub1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum well modulators require strict control over the wavelength of the exciton transition in order to minimize insertion loss and maximize voltage sensitivity at the desired wavelength of operation. Within the quaternary material system In
x
Ga1−
x
As
y
P1−
y
, there are two parameters which can be varied in order to tune the bandgap: the thickness of the quantum well layer and its composition. Tuning the bandgap by means of well size alone is of limited usefulness since the rate at which the exciton energy shifts with field drastically decreases as well width decreases 1. In this paper, we demonstrate for the first time that the compositional flexibility of quaternary quantum wells can be used to obtain field-induced shifts larger than those obtainable in InGaAs quantum wells, yielding enhanced electroabsorption and electrorefraction. We show that quaternary devices can fill a serious need for quantum well optical modulators in the wavelength range 1.3 µm to 1.55 µm for optical communications.
量子阱调制器需要严格控制激子跃迁的波长,以最小化插入损耗和最大化所需工作波长下的电压灵敏度。在四元材料体系In x Ga1−x As y P1−y中,有两个参数可以改变以调整带隙:量子阱层的厚度及其组成。由于激子能量随场移动的速率随着阱宽度的减小而急剧减小,因此仅通过阱尺寸来调节带隙的作用有限。在本文中,我们首次证明了四元量子阱的组成灵活性可以用来获得比InGaAs量子阱更大的场致位移,从而产生增强的电吸收和电折射。我们表明,在波长范围为1.3µm至1.55µm的光通信中,第四元器件可以满足对量子阱光调制器的严重需求。