Compositional Dependence of the Quantum Confined Stark Effect in Quaternary Quantum Wells

I. Bar-Joseph, J. Zucker, B. Miller, U. Koren, D. Chemla
{"title":"Compositional Dependence of the Quantum Confined Stark Effect in Quaternary Quantum Wells","authors":"I. Bar-Joseph, J. Zucker, B. Miller, U. Koren, D. Chemla","doi":"10.1364/qwoe.1989.tub1","DOIUrl":null,"url":null,"abstract":"Quantum well modulators require strict control over the wavelength of the exciton transition in order to minimize insertion loss and maximize voltage sensitivity at the desired wavelength of operation. Within the quaternary material system In\n x\n Ga1−\n x\n As\n y\n P1−\n y\n , there are two parameters which can be varied in order to tune the bandgap: the thickness of the quantum well layer and its composition. Tuning the bandgap by means of well size alone is of limited usefulness since the rate at which the exciton energy shifts with field drastically decreases as well width decreases 1. In this paper, we demonstrate for the first time that the compositional flexibility of quaternary quantum wells can be used to obtain field-induced shifts larger than those obtainable in InGaAs quantum wells, yielding enhanced electroabsorption and electrorefraction. We show that quaternary devices can fill a serious need for quantum well optical modulators in the wavelength range 1.3 µm to 1.55 µm for optical communications.","PeriodicalId":205579,"journal":{"name":"Quantum Wells for Optics and Optoelectronics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Wells for Optics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/qwoe.1989.tub1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum well modulators require strict control over the wavelength of the exciton transition in order to minimize insertion loss and maximize voltage sensitivity at the desired wavelength of operation. Within the quaternary material system In x Ga1− x As y P1− y , there are two parameters which can be varied in order to tune the bandgap: the thickness of the quantum well layer and its composition. Tuning the bandgap by means of well size alone is of limited usefulness since the rate at which the exciton energy shifts with field drastically decreases as well width decreases 1. In this paper, we demonstrate for the first time that the compositional flexibility of quaternary quantum wells can be used to obtain field-induced shifts larger than those obtainable in InGaAs quantum wells, yielding enhanced electroabsorption and electrorefraction. We show that quaternary devices can fill a serious need for quantum well optical modulators in the wavelength range 1.3 µm to 1.55 µm for optical communications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第四系量子阱中量子受限Stark效应的组分依赖性
量子阱调制器需要严格控制激子跃迁的波长,以最小化插入损耗和最大化所需工作波长下的电压灵敏度。在四元材料体系In x Ga1−x As y P1−y中,有两个参数可以改变以调整带隙:量子阱层的厚度及其组成。由于激子能量随场移动的速率随着阱宽度的减小而急剧减小,因此仅通过阱尺寸来调节带隙的作用有限。在本文中,我们首次证明了四元量子阱的组成灵活性可以用来获得比InGaAs量子阱更大的场致位移,从而产生增强的电吸收和电折射。我们表明,在波长范围为1.3µm至1.55µm的光通信中,第四元器件可以满足对量子阱光调制器的严重需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Optical Properties of Quantum-Confined CdSe Microcrystallites Inducing normally forbidden transitions within the conduction band of GaAs quantum wells Monte Carlo Simulation of Femtosecond Spectroscopy in Semiconductor Heterostructures Temperature-Dependent Characteristics of GaAs/AlGaAs Multiple Quantum Well Optical Modulators Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1